tính nha mấy bạn
(2X - 1).(2X+1).(4X^2+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{0;-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
Ta có: \(A=\left(\dfrac{1}{2x-1}+\dfrac{3}{1-4x^2}-\dfrac{2}{2x+1}\right):\left(\dfrac{x^2}{2x^2+x}\right)\)
\(=\left(\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{3}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{2\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}\right):\left(\dfrac{x^2}{x\left(2x+1\right)}\right)\)
\(=\dfrac{2x+1-3-4x+2}{\left(2x-1\right)\left(2x+1\right)}:\dfrac{x}{2x+1}\)
\(=\dfrac{-2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x}\)
\(=\dfrac{-2}{2x-1}\)
b) Ta có: \(\left|2x-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(nhận\right)\\x=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Thay \(x=\dfrac{3}{2}\) vào biểu thức \(A=\dfrac{-2}{2x-1}\), ta được:
\(A=-2:\left(2\cdot\dfrac{3}{2}-1\right)=-2:\left(3-1\right)=-2:2=-1\)
Vậy: Khi \(\left|2x-1\right|=2\) thì A=-1
c) Để \(A=\dfrac{1}{3}\) thì \(\dfrac{-2}{2x-1}=\dfrac{1}{3}\)
\(\Leftrightarrow2x-1=-6\)
\(\Leftrightarrow2x=-5\)
hay \(x=-\dfrac{5}{2}\)(thỏa ĐK)
Vậy: Để \(A=\dfrac{1}{3}\) thì \(x=-\dfrac{5}{2}\)
Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà
Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .
Tương tự SAID=SDNC=SBMC=SABK=Shv9 và SIKMN=Shv9
Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv
Vậy diện tích phần còn lại bằng 49 Shv
Suy ra diện tích hình vuông ABCD bằng 54 diện tích phần còn lại.
k mình nha
\(2x^2+y^2+2x-2xy+5-4y=0\)
\(\Leftrightarrow\left[y^2-2y\left(x+2\right)+\left(x+2\right)^2\right]+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(y-x-2\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y-x-2=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
\(S=\left(x+2\right)^2+\left(y-1\right)^2=\left(1+2\right)^2+\left(3-1\right)^2\)
\(=3^2+2^2=13\)
Câu 1:
\(\lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=\lim_{x\to +\infty}\frac{(2x-1)^2-(4x^2-4x-3)}{2x-1+\sqrt{4x^2-4x-3}}\) (liên hợp)
\(=\lim_{x\to +\infty}\frac{4}{2x-1+\sqrt{4x^2-4x-3}}=4\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}\)
Ta thấy với \(x\to +\infty\Rightarrow 2x-1+\sqrt{4x^2-4x-3}\to +\infty\)
Do đó: \(\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}=0\) (theo dạng \(\lim _{t\to \infty}\frac{1}{t}=0\) )
\(\Rightarrow \lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=0\)
Câu 3:
\(\lim_{x\to 1+} (x^3-1)\sqrt{\frac{x}{x^2-1}}=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)^2}{x^2-1}}\)
\(=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)}{x+1}}=(1+1+1)\sqrt{\frac{1.0}{1+1}}=0\)
Câu 2:
\(\lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\lim_{x\to 3}\frac{\sqrt{2x^2-2}-4}{9-x^2}-\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}+\lim_{x\to 3}\frac{2x-6}{9-x^2}\)
Ta có:
\(\lim_{x\to 3}\frac{2x^2-2-16}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{2(x^2-9)}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{-2}{\sqrt{2x^2-2}+4}=\frac{-1}{4}\) (1)
\(\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}=\lim_{x\to 3}\frac{4x-3-9}{(\sqrt{4x-3}+3)(9-x^2)}=\lim_{x\to 3}\frac{4(x-3)}{(\sqrt{4x-3}+3)(9-x^2)}\)
\(=\lim_{x\to 3}\frac{-4}{(\sqrt{4x-3}+3)(3+x)}=-\frac{1}{9}\) (2)
\(\lim _{x\to 3}\frac{2x-6}{9-x^2}=\lim_{x\to 3}\frac{2(x-3)}{9-x^2}=\lim_{x\to 3}\frac{-2}{x+3}=\frac{-1}{3}\) (3)
Từ \((1); (2); (3)\Rightarrow \lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\frac{-1}{4}+\frac{1}{9}-\frac{1}{3}=\frac{-17}{36}\)
a) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)
\(\Leftrightarrow\left(64x^2+8x+25\right)\left(8x^2+10x+3\right)-9=0\)
Đặt a = \(8x^2+10x+3\)
\(\left(8a+1\right)a-9=0\)
\(\Leftrightarrow8a^2+a-9=0\)
\(\Leftrightarrow\left(a-1\right)\left(8a+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{9}{8}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}8x^2+10x+3=1\\8x^2+10x+3=-\frac{9}{8}\end{cases}}\)
mà \(8x^2+10x+3=1\Rightarrow8x^2+10x+2=0\)
\(\Rightarrow2\left(x+1\right)\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-0,25\end{cases}}\)
(x+2)(4x^2 -2x+1)+(3-2x)(9+6x+4x^2) = -4x^3+6x^2-3x+29
nha bạn chúc bạn học tốt nha
chắc ngẩn tò te rùi, tui giải rõ hơn nhé, ở đây:
a = (2x+1) => a2 = (2x+1)2
b= ( 2x-1) => b2 = (2x-1)2
-2ab = - 2 (2x+1)(2x-1) = - 2(4x2 - 1)
đến đây mả bn k hiu nữa thì có giỏi như cô huyền,cô loan, cô vân cũng đành bó tay
\(\left(2x-1\right)\left(2x+1\right)\left(4x^2+1\right)\)
\(=\left(4x^2-1\right)\left(4x^2+1\right)\)
\(=16x^4-1\)
cái này là tính mà bạn