Tìm GTNN hoặc GTLN trong biểu thức sau \(x\left(6-x\right)+74+x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN, GTNN của biểu thức sau
\(1,A=\left(x-1\right)^2-10\)
\(2,B=-|x-1|-2\left(2y-1\right)^2+100\)
1: \(A=\left(x-1\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=1
2: \(B=-\left|x-1\right|-2\cdot\left(2y-1\right)^2+100\le100\)
Dấu '=' xảy ra khi x=1 và y=1/2
`(x-1)^2 >=0 => (x-1)^2 - 10 >= -10`
Dấu bằng xảy ra khi `x = 1`.
Vì `-|x-1| <=0, -2(2y-1)^2 <= 0`
`=> -|x-1| - 2(2y-1)^2 + 100 <= 100`
Dấu bằng xảy ra `<=> x = 1, y = 1/2`.
\(D=\dfrac{x^2}{x-2}\left(\dfrac{x^2+4-4x}{x}\right)+3\)
\(D=\dfrac{x^2}{x-2}\dfrac{\left(x-2\right)^2}{x}+3\)
\(D=x\left(x-2\right)+3\)
\(D=x^2-2x+1+2\)
\(D=\left(x-1\right)^2+2\ge2\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MinD là 2 \(\Leftrightarrow x=1\)
ta có :
| 2015 + x|\(\ge\)0
=> -|2015+x|\(\le\)0
=>A=2014-|2015+x|\(\le\)2014
Dấu "=" xảy ra khi:
2015+x=0
=>x=-2015
Vậy GTLN của A là 2014 tại x=-2015
l2015 + xl >=0 với mọi x
- l 2015 +x l <=0 với mọi x
2014 - l2015+ x l <= 2014 với mọi x
VẬy GTLN của A là 2014 khi x + 2015 = 0 => x = -2015
\(A=\left|2x-1\right|+3\ge3\)
Dấu '=' xảy ra khi x=1/2
\(B=x^2+\left|3y+5\right|+2\ge2\)
Dấu '=' xảy ra khi x=0 và y=-5/3
\(C=-\left(x+1\right)^2+2017\le2017\)
Dấu '=' xảy ra khi x=-1
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
A = x( 6 - x ) + 74 + x
A = 6x - x2 + 74 + x
A = - x2 + 7x + 74
A = - ( x2 - 7x - 74 )
A = - [ x2 - 2 . 7 / 2 + ( 7 / 2 )2 - ( 7 / 2 )2 - 74 ]
A = - ( x - 7 / 2 )2 - 345 / 2 \(\le\)- 345 / 2
Dấu= xảy ra \(\Leftrightarrow\)x - 7 / 2 = 0
\(\Rightarrow\)x = 7 / 2
Vậy : Max A = - 345 / 2 \(\Leftrightarrow\)x = 7 / 2
\(x\left(x-6\right)+74+x\)
\(=x^2-6x+74+x\)
\(=x^2-5x+74\)
\(=\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{271}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{271}{4}\ge\frac{271}{4}\)
Dấu '' = '' xảy ra
\(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy..................
P/s : chưa kt lại bài nên sai bỏ qua