K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét x=0,x=1 thì thỏa mãn

Xét x khác 0,1

Dùng phản chứng là ra mà "<<

29 tháng 10 2019

Với mọi số nguyên n ta có n <= n2 . Do đó từ đề bài suy ra :

    x2 <= y <= y2 <= z <= z2 <= x <= x2.

Do đó x^2 = y = y^2 = z = z^2 = x = x^2.

Ta có : x^2 = x <=> x(x-1) = 0 <=> x = 0 và x = 1

Tương tự như thế

Vậy : ...

NV
29 tháng 4 2021

Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)

Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)

Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)

Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)

\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)

11 tháng 7 2016

1) = xy +1 -x -y =0

y(x-1) -(x-1) = (x-1)(y-1)=0

x =1

y=1

11 tháng 7 2016

các bn giỏi toán thân mến,các bn hỏi toán đã biến chúng ta thành osin ,làm k công,chúng ta cứ cày đầu giải còn năn nỉ công nhận,

tui nghĩ chất sám có giá trị cao nhât nên chỉ giải cho các bn giỏi hieu ,còn lại k cần năn nỉ loại ngu công nhận vi chúng chẳng hieu j,

học toán mà k chịu suy nghĩ thi còn lâu moi giỏi

2 tháng 6 2023

\(x^2+xy+y^2=x+y\)

\(\Leftrightarrow2x^2+2xy+2y^2-2x-2y=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

Tới đây do \(2=1^2+1^2+0^2\) , đồng thời để ý rằng vai trò \(x,y\) như nhau nên ta sẽ có 2TH

 TH1: \(x+y=0\) và \(\left(x-1\right)^2+\left(y-1\right)^2=1^2+1^2\)   (1)

khi đó \(y=-x\) nên \(x-1\ne y-1\). Do đó từ (1), giả sử \(x\ge y\) suy ra \(\left\{{}\begin{matrix}x-1=1\\y-1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\), vô lí. Làm tương tự với \(y\ge x\)

 TH2: \(x+y\ne0\). Khi đó \(x+y=\pm1\)

    TH2.1: \(x+y=1\). Khi đó từ (1), suy ra 1 trong 2 số \(x-1,y-1\) phải bằng 0. Do vai trò x, y như nhau nên giả sử \(x-1=0\)\(\Leftrightarrow x=1\), khi đó \(y=0\), thỏa mãn. Ta tìm được nghiệm \(\left(x;y\right)=\left(1;0\right)\). Tương tự, tìm được nghiệm \(\left(x;y\right)=\left(0;1\right)\)

    TH2.2: \(x+y=-1\). Giả sử \(x-1=0\) \(\Leftrightarrow x=1\), khi đó \(y=-2\), loại.

 Như vậy, pt đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)

 

2 tháng 6 2023

Cách thứ 2 nhé:

\(x^2+xy+y^2=x+y\)

\(\Leftrightarrow x^2+\left(y-1\right)x+y^2-y=0\)

\(\Delta=\left(y-1\right)^2-4\left(y^2-y\right)\) \(=\left(y-1\right)^2-4y\left(y-1\right)\) \(=\left(y-1\right)\left[\left(y-1\right)-4y\right]\) \(=\left(y-1\right)\left(-1-3y\right)\)

Để pt đã cho có nghiệm thì \(\Delta=-\left(y-1\right)\left(3y+1\right)\ge0\) \(\Leftrightarrow\left(y-1\right)\left(3y+1\right)\le0\) \(\Leftrightarrow-\dfrac{1}{3}\le y\le1\). Do \(y\inℤ\) nên \(y\in\left\{0;1\right\}\). Nếu \(y=0\) thì thay vào pt đầu, dễ dàng suy ra \(x=1\). Còn nếu \(y=1\) thì cũng dễ dàng suy ra \(x=0\).

Vậy ohương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)

30 tháng 8 2016

bài x^4-7^y=2014 dùng đồng dư là ra nhé bạn

31 tháng 8 2016

mình cũng chịu

9 tháng 3 2022

(x+3)(y+2)=1
⇒(x+3)∈Ư(1)={-1:1}
Ta có bảng sau:
 

x+31-1
y+21-1
x-2-4
y-1-3
Nhận xétChọnChọn


Vậy ...