K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2019

HPT \(\Leftrightarrow\)\(\hept{\begin{cases}\sqrt{2\left(x^2+y^2\right)}+2\sqrt{xy}=16\\x+y+2\sqrt{xy}=16\end{cases}}\)

Như vậy ta có: \(\sqrt{2\left(x^2+y^2\right)}=x+y\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

Bí.

19 tháng 6 2017

._. Có cái BĐT 2(x^2+y^2) ≥ (x+y)^2  => √ (x^2 +y^2) ≥ (x+y)/( √2) 
=> √ (x^2 +y^2)  +√2xy)  ≥ (x+y)/( √2) +( √(2xy)) = (x+y+2√xy)/√2   = (√x +√y )^2 /√2 =8√2 ( vì √x +√y=4)

Vậy Dấu = sảy ra x=y=4 

28 tháng 1 2017

Xin lỗi bạn, mình chưa học lớp 9 nén không bít hệ phương trình

Thoòng cảm nha

28 tháng 1 2017

thì là tìm x, y đó

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

29 tháng 10 2018

\(\hept{\begin{cases}\sqrt{2-x}+\sqrt{2-y}+\sqrt{2-z}=3\left(1\right)\\\sqrt{8+x}+\sqrt{8+y}+\sqrt{8+z}=9\left(2\right)\end{cases}}\)( ĐKXĐ : -8 < x ; y ; z < 2 )

Áp dụng bđt B.C.S cho pt (1) và (2) ta được :

\(\sqrt{2-x}+\sqrt{2-y}+\sqrt{2-z}\le\sqrt{\left(1+1+1\right)\left(2-x+2-y+2-z\right)}\) 

\(\Leftrightarrow3\le\sqrt{3\left(6-x-y-z\right)}\)

\(\Leftrightarrow3\le6-x-y-z\)

\(\Leftrightarrow x+y+z\le3\)(*)

\(\sqrt{8+x}+\sqrt{8+y}+\sqrt{8+z}\le\sqrt{\left(1+1+1\right)\left(8+x+8+y+8+z\right)}\)

\(\Leftrightarrow9\le\sqrt{3\left(24+x+y+z\right)}\)

\(\Leftrightarrow81\le3\left(24+x+y+z\right)\)

\(\Leftrightarrow x+y+z\ge3\)(**)

Từ (*)(**) =>  x + y + z = 3                     

                   <=> x = y = z =1 (Vì x ; y ; z có vai trò như nhau ) ( tm ĐKXĐ )

Vậy x = y = z = 1

P/S : Bài này cứ để ý mấy cái căn có vai trò như nhau là nghĩ ra dùng Bunhiacopxki luôn ^^

12 tháng 10 2017

pt(1)<=>\(\left(\sqrt{x-1}+\sqrt{y}\right)^2=4\)

29 tháng 11 2019

a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) :

\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)

Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)

29 tháng 11 2019

b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)

Lấy (2 ) -(1) thu được :

\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)

Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)

Vậy ......