3B
cho hai góc kề bù aOb và bOc, biết aOb - bOc= 120. Trong góc aOb vẽ tia Od sao cho aOc = 60. Chứng tỏ \(Ob\perp Od\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ góc aob và boc kề nhau có tổng = 60 độ
các bạn giúp mình với
Ta có: a O b ^ − b O c ^ = 120 0 ⇒ a O b ^ = 120 0 + b O c ^
Vì a O b ^ và b O c ^ là hai góc kề bù nên a O b ^ + b O c ^ = 180 0
⇒ 120 0 + b O c ^ + b O c ^ = 180 0 ⇒ 2 b O c ^ = 60 0 ⇒ b O c ^ = 30 0
⇒ a O b ^ = 150 0
Vì Od nằm trong góc a O b ^ nên a O d ^ + d O b ^ = a O b ^
⇒ 60 0 + d O b ^ = 150 0 ⇒ d O b ^ = 90 0
Vậy O b ⊥ O d (đpcm)
mày đừng so sánh tao với nó\n_vì nó là chó còn tao là người\n_Mày đừng bật cười khi nghe điều đó\n_vì cả mày và nó đều chó như nhau
(hình tự vẽ)
a, Ta có: \(\widehat{AOB}+\widehat{BOC}=180^o\)
\(\Rightarrow3\widehat{BOC}+\widehat{BOC}=180^o\)
\(\Rightarrow4\widehat{BOC}=180^o\)
\(\Rightarrow\widehat{BOC}=45^o\)
\(\Rightarrow\widehat{AOC}=3\widehat{BOC}=3.45^o=135^o\)
b, Ta có: \(\widehat{AOD}+\widehat{DOB}=135^o\)
\(\Rightarrow90^o+\widehat{DOB}=135^o\)
\(\Rightarrow\widehat{DOB}=45^o\)
Mà \(\widehat{BOC}=45^o\)
\(\Rightarrow\widehat{DOB}=\widehat{BOC}=45^o\)
Và OB nằm giữa OD, OC
=> OB là tia p/g của \(\widehat{COD}\)
Bị lỗi à trời.
Cho hai góc kề bù aOb và bOc, biết aOb - bOc= 120. Trong góc aOb vẽ tia Od sao cho aOc = 60. Chứng tỏ Ob⊥Od
=> Bạn ơi! có sự mâu thuẫn ở đây. \(\widehat{aOc}=180^0\) mà.
Bạn xem lại đề nhé!