K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

\(P=x^2-4x+2x-8+9,5=x^2-2x+1-9+9,5=\)

\(=\left(x-1\right)^2+0,5>0\forall x\)

3 tháng 12 2017

Ta có: \(x^2-4x+5=\left(x^2-2.x.2+2^2\right)+1\)

                                      \(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right);1\ge0\)

Vậy \(x^2-4x+5\ge0\left(\forall x\right)\)

25 tháng 8 2020

( x - 2 )( x - 4 ) + 3

<=> x2 - 6x + 8 + 3

<=> ( x2 - 6x + 9 ) + 2

<=> ( x - 3 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

17 tháng 8 2020

\(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\)(đk:\(1\le x< 2\)) Lý do có điều kiện này là nhờ vào việc VT=1>0

\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4\left(x-1\right)+4\sqrt{x-1}+1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)

\(\Leftrightarrow\left(\sqrt{x-1}+2\right)-\left(2\sqrt{x-1}+1\right)=1\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x=1\)(thõa mãn điều kiện)

17 tháng 8 2020

Ta có : \(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4.\left(x-1\right)+4.\sqrt{x-1}+1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}+2\right|-\left|2\sqrt{x-1}+1\right|=1\)

\(\Leftrightarrow\sqrt{x-1}+2-2\sqrt{x-1}-1=1\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\) ( Thỏa mãn )

7 tháng 7 2018

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

7 tháng 7 2018

Giúp mình với !!

19 tháng 9 2016

áp dụngBĐT cô si ta có

\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x

\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y

\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z

khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)

áp dụng BĐT cô si

x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3

do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\)  (đpcm)

7 tháng 4 2020

a) Ta có : ( x+3 ).( x- 5 ) = 0

suy ra: x+3 = 0 hoặc x - 5 = 0 

suy ra : x = -3 hoặc x = 5 

KL : Vậy x = -3 hoặc x = 5 

lễ phép với người già . tôt trọng mn . đối sử tốt với bn bè . tự giác hc tập ko đợi nhắc nhỡ .....