K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$

Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:

$x=0$

$x=\frac{1}{2}\pi$

$x=\pi$

 

NV
20 tháng 10 2019

\(\Leftrightarrow1-cos^2x+2cosx-2+m=0\)

\(\Leftrightarrow cos^2x-2cosx+1=m\)

\(\Leftrightarrow\left(cosx-1\right)^2=m\)

Do \(-1\le cosx\le1\Rightarrow0\le\left(cosx-1\right)^2\le4\)

\(\Rightarrow0\le m\le4\)

NV
22 tháng 12 2020

\(x^2-5x+7+2m=0\Leftrightarrow x^2-5x+7=-2m\)

Xét hàm \(f\left(x\right)=x^2-5x+7\) trên \(\left[1;5\right]\)

\(-\dfrac{b}{2a}=\dfrac{5}{2}\in\left[1;5\right]\)

\(f\left(1\right)=3\) ; \(f\left(\dfrac{5}{2}\right)=\dfrac{3}{4}\) ; \(f\left(5\right)=7\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb thuộc đoạn đã cho khi và chỉ khi:

\(\dfrac{3}{4}< -2m\le3\)

\(\Leftrightarrow-\dfrac{3}{2}\le m< \dfrac{3}{8}\)

Cả 4 đáp án đều sai là sao ta?

22 tháng 12 2020

tại sao để pt đã cho có 2 nghiệm pb thuộc đoạn [1;5] thì \(\dfrac{3}{4}\le-2m\le3\) ạ?

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8

20 tháng 11 2021

\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)

\(B=\left\{-1;0;1;2;3;4;5\right\}\)

\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)

\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\) 

\(x=1\Rightarrow y=1-2+m=m-1\)

\(\Rightarrow C=(m-1;m+3]\subset A\)

\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)

 

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

30 tháng 4 2021

- Áp dụng BĐT bunhiacopxki ta có :

\(\left(3sinx+4cosx\right)^2\le\left(3^2+4^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Leftrightarrow-5\le M\le5\)

P/s : Chắc là đề nhầm :vvv nếu không nhầm thì thêm bớt rồi bunhi xong cộng với cos thêm vào nha

30 tháng 4 2021

Cảm ơn bạn nhìu nhaaa!