Cho ∆ABC. Phân giác Bd và CE cắt nhau tại H. Biết Góc ADB =GÓC AEC. Chứng minh : Góc B = Góc C
Mình cần gấp. Các bạn giúp mik nha, 😘😘😘 bạn nào đúng mình tick ✔ cho. Cảm ơn các bạn nhiều nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC
c) Ta có AB vuông góc BK; AB vuông góc CH => BK//CH
tương tự BH//CK => tứ giác BHCK là hình bình hành mà M là trung điểm BC => M là trugn điểm HK => H,M,K thẳng hàng
CM: Xét t/giác ABD và t/giác AED
có: AB = AE (gt)
\(\widehat{BAD}=\widehat{EAD}\)(Gt)
AD : chung
=> t/giác ABD = t/giác AED (c.g.c)
=> \(\widehat{BDA}=\widehat{ADE}\)(2 góc t/ứng)
=> DA là tia p/giác của góc BDE
CÓ:
Xét \(\Delta\)AEC có: \(\widehat{ACE}=180^o-\widehat{AEC}-\widehat{EAC}\)
Xét \(\Delta\)ADB có: \(\widehat{ABD}=180^o-\widehat{ADB}-\widehat{DAB}\)
Mà \(\widehat{AEC}=\widehat{ADB}\left(gt\right);\widehat{EAC}=\widehat{DAB}\left(=\widehat{BAC}\right)\)
=> \(\widehat{ACE}=\widehat{ABD}\)
=> \(2.\widehat{ACE}=2.\widehat{ABD}\)
=> \(\widehat{ABC}=\widehat{ACB}.\)