phân tích đa thức sau thành nhân tử :
a.x^2 + x - y^2 +y
b.3x^2 + 3y^2 - 6xy - 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
\(a)\)\(3x^2-6xy+3y^2-12\)
\(=\)\(3\left(x^2-2xy+y^2\right)-12\)
\(=\)\(3\left(x-y\right)^2-12\)
\(=\)\(3\left[\left(x-y\right)^2-4\right]\)
\(=\)\(3\left(x-y-4\right)\left(x-y+4\right)\)
\(b)\)\(x^2+5x+6\)
\(=\)\(\left(x^2+2x\right)+\left(3x+6\right)\)
\(=\)\(x\left(x+2\right)+3\left(x+2\right)\)
\(=\)\(\left(x+2\right)\left(x+3\right)\)
Chúc bạn học tốt ~
a) 3x2-6xy+3y2-12=3(x2-2xy+y2)-12=3(x-y)2-12=3[(x-y)2-4]=3(x-y-2)(x-y+2)
b)x2+3x+2x+6=x(x+3)+2(x+3)=(x+3)(x+2)
a) \(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
b) \(8x^3+y^3-6xy\left(2x+y\right)=\left(8x^3+y^3\right)-6xy\left(2x+y\right)=[\left(2x\right)^3+y^3]-6xy\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-6xy\left(2x+y\right)=\left(2x+y\right)\left(4x^2-2xy+y^2-6xy\right)\)
\(=\left(2x+y\right)\left(4x^2-8xy+y^2\right)\)
c) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=[\left(3x+2\right)-\left(x-1\right)]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2=\left(2x+3\right)\left(2x+3\right)\)
a , 3x2 + 3y2 - 6xy - 12
= 3 ( x2 + y2 - 2xy - 4 )
= 3 ( x - y )2 - 22
= 3 ( x - y + 2 ) ( x - y - 2 )
`a)7x^3y^2+14x^2y^3+7xy^4`
`=7xy^2(x^2+2xy+y^2)`
`=7xy^2(x+y)^2`
______________________________________________
`b)x^2-xy+5x-5y`
`=x(x-y)+5(x-y)`
`=(x-y)(x+5)`
______________________________________________
`c)3x^2-6xy-12+3y^2`
`=3(x^2-2xy-4+y^2)`
`=3[(x-y)^2-4]`
`=3(x-y-2)(x-y+2)`
a)7x3y2+14x2y3+7xy4
=7xy2(x2+2xy+y2)
=7xy2(x+y)2
b)x2-xy + 5x - 5y
=x(x-y) + 5(x-y)
=(x-y) (x+5)
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
3x^2 +3y^2 -6xy -12
=3(x^2 - 2xy +y^2 - 2^2 )
=3 (x-y)^2 - 2^2
=3(x-y-2)(x-y+2)
3(x+y) -(x^2+2xy+y^2)
=3(x+y) -(x+y)^2
(x+y)(3-x-y)
a) x2 +x -y2 + y = ( x2 -y2 ) +(x+y)
= (x-y)(x+y) +(x+y)
=(x+y)( x-y+1)
b) 3x2 +3y2 -6xy -12 = 3(x2 +y2 - 2xy) -12
=3 [ (x-y)2 -4]
= 3( x-y-2)(x-y+2)
a) x2 + x - y2 + y
= (x2 - y2) + (x + y)
= (x + y) (x - y) + (x + y)
= x + y
b) 3x2 + 3y2 - 6xy - 12
= 3 (x2 + y2 - 2xy - 4)
= 3 [(x2 - 2xy + y2) - 4]
= 3 [(x - y)2 - 22]
= 3 (x - y + 2) (x - y - 2)
(sai thì thôi)