K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Cách 1:\(S=a+\frac{1}{a}=a+\frac{16}{a}-\frac{15}{a}\ge2\sqrt{a.\frac{16}{a}}-\frac{15}{4}=\frac{17}{4}\)

Đẳng thức xảy ra khi x = 4

Vậy...

Cách 2: \(S=a+\frac{1}{a}=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\)

\(\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi x = 4

Vậy...

Cách 3: Xét hàm \(S=f\left(a\right)=a+\frac{1}{a}\)\(4\le a_1< a_2\)

Khi đó \(f\left(a_2\right)-f\left(a_1\right)=\left(a_2-a_1\right)-\frac{a_2-a_1}{a_1a_2}\)

\(=\left(a_2-a_1\right)\left(\frac{a_1a_2-1}{a_1a_2}\right)>0\)

Như vậy khi a càng nhỏ thì S càng nhỏ. Do đó \(S=f\left(a\right)\ge f\left(4\right)=\frac{17}{4}\)

Đẳng thức xảy ra khi a = 4

P/s: Em ko chắc ở cách thứ 3 cho lắm!

BĐT Bunhiacopxky em chưa học cô ạ

Cô cong cách nào không ạ

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Nguyễn Thị Nguyệt Ánh:

Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:

Áp dụng BĐT Cô-si:

$x+y+z\geq 3\sqrt[3]{xyz}$

$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$

Nhân theo vế:

$(x+y+z)(xy+yz+xz)\geq 9xyz$

$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

NV
2 tháng 4 2019

a/ \(a>b\Rightarrow a-b>0\)

\(P=\frac{\left(a-b\right)^2+2ab+1}{a-b}=\frac{\left(a-b\right)^2+9}{a-b}=a-b+\frac{9}{a-b}\)

\(\Rightarrow P\ge2\sqrt{\left(a-b\right)\frac{9}{a-b}}=6\Rightarrow P_{min}=6\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a>b\\ab=4\\\left(a-b\right)^2=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=-1\\b=-4\end{matrix}\right.\)

b/

\(x\ge3y\Rightarrow\frac{x}{y}\ge3\)

\(A=\frac{4x^2+9y^2}{xy}=4\frac{x}{y}+9\frac{y}{x}=3\frac{x}{y}+\frac{x}{y}+9\frac{y}{x}\)

\(\Rightarrow A\ge3\frac{x}{y}+2\sqrt{\frac{x}{y}.\frac{9y}{x}}\ge3.3+2.3=15\)

\(\Rightarrow A_{min}=15\) khi \(x=3y\)

2 tháng 4 2019

Cám ơn

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

NM
9 tháng 8 2021

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

2 tháng 7 2017

ta có:

\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)

áp dụng bất đẳng thức Cauchy ta có:

\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}=2.\sqrt{\frac{1}{4}}=1\)

\(\frac{9\left(a^2+1\right)}{4a}\ge\frac{9.2a}{4a}=\frac{9}{2}\)

\(\Rightarrow S\ge\frac{9}{2}+1=\frac{11}{2}\)

Vậy \(Min_S=\frac{11}{2}\)khi a=1

2 tháng 7 2017

bạn ơi tại sao lại là \(\frac{9\left(a^2+1\right)}{4a}=\frac{9.2a}{4a}\)

22 tháng 4 2020

Áp dụng bất đẳng thức Cosi ta có : 

\(4\ge a+b\ge2\sqrt{ab}\Leftrightarrow\sqrt{ab}\le2\Leftrightarrow ab\le4\)

Ta có bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

(Nhân chéo để chứng minh ) 

Áp dụng : 

\(S=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{49}{2ab}+ab\)

\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{16}{ab}+\frac{17}{2ab}\)

\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{ab.\frac{16}{ab}}+\frac{17}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+8+\frac{17}{2.4}=\frac{1}{4}+8+\frac{17}{8}=\frac{83}{8}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

4 tháng 10 2020

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

Xét \(\left(a^2+\frac{1}{b+c}\right)\left(4^2+1^2\right)\ge\left(4a+\frac{1}{\sqrt{b+c}}\right)^2\)

=> \(\sqrt{a^2+\frac{1}{b+c}}\ge\frac{4a+\frac{1}{\sqrt{b+c}}}{\sqrt{17}}\)

Tương tự => \(\left\{{}\begin{matrix}\sqrt{b^2+\frac{1}{c+a}}\ge\frac{4b+\frac{1}{\sqrt{c+a}}}{\sqrt{17}}\\\sqrt{c^2+\frac{1}{a+b}}\ge\frac{4c+\frac{1}{\sqrt{a+b}}}{\sqrt{17}}\end{matrix}\right.\)

=> A \(\ge\frac{4\left(a+b+c\right)+\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}}{\sqrt{17}}\)

\(\frac{1}{\sqrt{a+b}}=\frac{4}{4.\sqrt{a+b}}\)

\(\sqrt{\left(a+b\right).4}\le\frac{a+b+4}{2}\) => \(4\sqrt{a+b}\le a+b+4\)

=> \(\frac{1}{\sqrt{a+b}}\ge\frac{4}{a+b+4}\)

Tương tự => \(\left\{{}\begin{matrix}\frac{1}{\sqrt{b+c}}\ge\frac{4}{b+c+4}\\\frac{1}{\sqrt{c+a}}\ge\frac{4}{c+a+4}\end{matrix}\right.\)

=> \(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\) \(\ge4.\left(\frac{1}{b+c+4}+\frac{1}{c+a+4}+\frac{1}{a+b+4}\right)\)

\(\ge4.\frac{9}{2a+2b+2c+12}=\frac{3}{2}\)

=> \(A\ge\frac{4.6+\frac{3}{2}}{\sqrt{17}}=\frac{3.\sqrt{17}}{2}\)