K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Với x, y, z nguyê:

Có: \(x^2+y^2-xy=x+y+2\)

=> \(2x^2+2y^2-2xy-2x-2y=4\)

=> \(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=6=1^2+1^2+2^2\)

=> x khác y 

G/s : x >y

=> x -1 > y - 1

Có các TH saU;

 \(\hept{\begin{cases}x-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=4\)( thỏa mãn )

\(\hept{\begin{cases}x-1=-1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=1\)( thỏa mãn)

\(\hept{\begin{cases}x-1=1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )

\(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}\Rightarrow\left(x-y\right)^2=1\)(thỏa mãn)

\(\hept{\begin{cases}x-1=2\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )

\(\hept{\begin{cases}x-1=2\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=16\)( loại )

Vậy nghiệm ( x; y) là ( 2;0), (0; -1) , (3; 2 ), và các hoán vị.

1 tháng 9 2021

https://hoc24.vn/cau-hoi/chung-minh-rang-phuong-trinh-sau-khong-co-nghiem-nguyena-x2-y21998b-x2y21994.262907021445

1 tháng 9 2021

y2 = x2 - 1998

x2 = 1998 + y2

y = \(\sqrt{x^2-1998}\)

x = \(\sqrt{1998+y^2}\)

y = x - \(\sqrt{1998}\)

x = y + \(\sqrt{1998}\)

30 tháng 7 2021

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

26 tháng 7 2019

Ta có  x + y 2 + y = 3 2 x 2 + y 2 + x y + x = 5 ⇔ 2 x 2 + 4 x y + 2 y 2 + 2 y = 6 2 x 2 + 2 y 2 + 2 x y + x = 5

Suy ra 2xy + 2y – x – 1 = 0 ⇔ (x + 1) (2y – 1) = 0x = −1 hoặc y = 1 2  

Với x = −1, ta được y 2 – y – 2 = 0 ⇔ y = − 1 y = 2  

Ta được hai nghiệm (−1; −1) và (−1; 2)

Với y = 1 2 , ta được x 2 + x − 9 4 = 0 ⇔ x = − 1 ± 10 2    

Ta được hai nghiệm − 1 − 10 2 ; 1 2 và  − 1 + 10 2 ; 1 2

Vậy hệ có bốn nghiệm (−1; −1); (−1; 2); − 1 − 10 2 ; 1 2 và  − 1 + 10 2 ; 1 2

Đáp án:A

28 tháng 1 2017

ĐK:  y ≥ 1 3 x + 2 y ≥ 1 ⇔ x ≥ 1 − 2 y y ≥ 1 3

Xét  3 y − 1 + x + 2 y − 1 = 0 ⇔ x = y = 1 3

Thay vào (2) không thỏa mãn

Xét  3 y − 1 + x + 2 y − 1 ≠ 0 ⇔ x ≠ 1 3 y ≠ 1 3

(1) ⇔ y ( x   –   y ) = y − x 3 y − 1 + x + 2 y − 1

Với x = y, thay vào (2) ta được:

x 4 – 4 x 3 + 7 x 2 − 6 x + 2 = 0 ⇔ ( x – 1 ) 2   ( x 2 – 2 x + 2 ) = 0 ⇔ x   =   1

Khi đó: y = 1 (TM). Vậy nghiệm của hệ là (1; 1)

Nên x. y = 1

Đáp án:B

17 tháng 7 2016

nhan 2 ve voi x+y roi suot hien hang dang thuc

10 tháng 6 2017

Điều kiện y ≠ 0

Hệ phương trình tương đương với x + y + x y = 7    ( 1 ) x x y + 1 = 12    ( 2 )

Từ (1) và x, y là số nguyên nên y là ước của x

Từ (2) ta có x là ước của 12

Vậy có duy nhất một nghiệm nguyên x = 3, y = 1 nên xy = 3

Đáp án cần chọn là: C

26 tháng 9 2017

Đáp án A

29 tháng 4 2018

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy hệ phương trình có hai nghiệm (x; y) = (0; 2); (x; y) = (2; 0) Từ giả thiết x > y nên x = 2; y = 0  ⇒ xy = 0

19 tháng 6 2017

t 2

Ta có:   x + y + x y = - 13 x 2 + y 2 - x - y = 32 ⇔ x + y + x y = - 13 ( x + y ) 2 - 2 x y - ( x + y ) = 32

Đặt S = x+ y; P = xy . Khi đó, hệ phương trình trên trở thành:

S + P = - 13             ( 1 ) S 2 - 2 P - S = 32   ( 2 )

Từ (1) suy ra: P = -S – 13 thay vào (2) ta được:

S 2 – 2(-S – 13) – S =  32

⇔ S 2 + 2 S + 26 - S - 32 = 0 ⇔ S 2 + S - 6 = 0 ⇔ [ S = 2 S = - 3

 * Với S = 2 thì P = -15 . Khi đó , x và y là nghiệm phương trình:

     t 2   - 2t – 15 = 0 ⇔ [ t = 5 t = - 3

* Với S = -3 thì P =  -10. Khi đó, x và y là nghiệm phương trình:

    t 2  + 3t – 10 =0 ⇔ [ t = 2 t = - 5

Vậy hệ phương trình đã cho có 4 nghiệm ( 5; -3); (-3; 5); (2; -5); (-5; 2).

Chọn D.