K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

21 tháng 4 2019

a, bạn tìm đenta phẩy

sau đó cho đenta phẩy lớn hơn 0

b, bn tìm x1+x2=.., x1*x2=.. theo hệ thức viets

sau đó quy đơngf pt 1/x1+1/x2>1

thay x1+x2.... vào pt đó

tìm đc m nha

22 tháng 1 2017

Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)

Ta lại có

\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)

\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)

\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)

\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)

\(=\left(a-b\right)^2\ge0\)

\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm

Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm

21 tháng 4 2020

 giải thích vì sao

21 tháng 4 2020

m khác 2 nha bn

Học tốt

11 tháng 4 2017

cong lai nhu phep cong tuy hoi do nhung van ra

1:Phương trình luôn có nghiệm với mọi m<>0

Sửa đề: Chứng minh 

TH1: m=0

Phương trình sẽ trở thành \(0x^2-2\left(0+1\right)x+1-3\cdot0=0\)

=>1=0(vô lý)

TH2: m<>0

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot m\cdot\left(1-3m\right)\)

\(=4\left(m+1\right)^2-4m+12m^2\)

\(=4m^2+8m+4-4m+12m^2\)

\(=16m^2+4m+4\)

\(=16\left(m^2+\dfrac{1}{4}m+\dfrac{1}{4}\right)\)

\(=16\left(m^2+2\cdot m\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{15}{64}\right)\)

\(=16\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall m\)

=>Phương trình luôn có nghiệm với mọi m<>0

2: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m+1\right)\right]}{m}=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{1-3m}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(\dfrac{2m+2}{m}\right)^2-2\cdot\dfrac{1-3m}{m}\)

\(=\dfrac{4m^2+8m+4}{m^2}+\dfrac{6m-2}{m}\)

\(=\dfrac{4m^2+8m+4+6m^2-2m}{m^2}\)

\(=\dfrac{10m^2+6m+4}{m^2}\)

\(=10+\dfrac{6}{m}+\dfrac{4}{m^2}\)

\(=\left(\dfrac{2}{m}\right)^2+2\cdot\dfrac{2}{m}\cdot1,5+2,25+7,75\)

\(=\left(\dfrac{2}{m}+1,5\right)^2+7,75>=7,75\forall m\ne0\)

Dấu '=' xảy ra khi \(\dfrac{2}{m}+1,5=0\)

=>\(\dfrac{2}{m}=-1,5\)

=>\(m=-\dfrac{2}{1,5}=-\dfrac{4}{3}\)

NV
23 tháng 1

Với \(m=0\) pt có nghiệm

Với \(m\ne0\)

\(\Delta'=\left(m+1\right)^2-m\left(1-3m\right)=4m^2+m+1=\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{16}>0;\forall m\)

Pt luôn có nghiệm với mọi m

b. Câu này chắc đề đúng là "với m khác 0"

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m}\\x_1x_2=\dfrac{1-3m}{m}\end{matrix}\right.\)

\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\dfrac{4\left(m+1\right)^2}{m^2}-\dfrac{2\left(1-3m\right)}{m}\)

\(=\dfrac{10m^2+6m+4}{m^2}=\dfrac{4}{m^2}+\dfrac{6}{m}+10\)

\(=4\left(\dfrac{1}{m}+\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra khi \(m=-\dfrac{4}{3}\)