CM: A = 8^3 + 8^33 chia hết cho 400
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tong ( hieu) chia het cho 8 la : 400-144 va 32+ 47+ 33
roi do ban!!!!!
chuc ban hoc tot!!!
a. 278 - 321
= (33)8 - 321
= 324 - 321
= 321.(33 - 1)
= 321.(27 - 1)
= 321.26 chia hết cho 26
Vậy 278 - 321 chia hết cho 26 (Đpcm).
b. 812 - 233 - 230
= (23)12 - 233 - 230
= 236 - 233 - 230
= 26.230 - 23.230 - 230
= 230.(26 - 23 - 1)
= 230.(64 - 8 - 1)
= 230.55 chia hết cho 55
Vậy 812 - 2 33 - 230 chia hết cho 55 (Đpcm).
a ) 278 - 321
= ( 33)8 - 321
= 324 - 321
= 321 . ( 33 - 1 )
= 321 . ( 27 - 1 )
= 321 . 26 chia hết cho 26
Vậy 278 - 321 chia hết cho 26 ( Đpcm )
b ) 812 - 233- 230
= ( 23)12 - 233 - 230
= 236 - 233 - 230
= 26.230 - 23.230 - 230
= 230.(26 - 23 - 1 )
= 230.(64 - 8 -1 )
= 230.55 chia hết cho 55
Vậy 812 - 233 - 230 chia hết cho 55 ( Đpcm )
kick mk nha mk kick lại
Chứng minh rằng :
a, 1033+ 8 chia hết cho 9 và chia hết cho 2
Vì 10 chia hết cho 2 và 8 chia hết cho 2
=> 1033 + 8 chia hết cho 2
b, 1033 +14 ko chia hết cho 3 và chỉ chia hết cho 2
\(A=3+3^2+3^3+...+3^{2020}=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}.\left(1+3\right)=\left(1+3\right)\left(3+3^3+...+3^{2019}\right)=4.\left(3+3^3+...+3^{2019}\right)⋮4\)
A=3 + 32 + 33 + ... + 32020 =3 (1 + 3) + 33 (1 + 3) + ... + 32019 . (1 + 3)
=(1 + 3)(3 + 33+...+32019)=4 . ( 3 + 33+ ... + 32019) ⋮ 4
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)
a) A = 1 + 3 + 32 + .... + 311
= (1+3+32 ) + ( 33 + 34 + 35) + ..... + (39 + 310 + 311)
= 13 + 33 . 13 + .... + 39 . 13
= 13 . (1+ 33 +....+ 39)
=> A chia hết cho 13
b) B = 165 + 215
= 220 +215
= 215 . 25 + 215
= 215 . ( 25 + 1)
= 215 .33
=> B chia hết cho 33
c) C= 5 + 52 + 53 + .....+ 58
= (5 + 52) + (53 + 54) +....+ ( 57 + 58)
= 30 + 52 (5 + 52) + ....+ 56 ( 5 + 52)
= 30 + 52 . 30 + .....+ 56 . 30
= 30. ( 1+ 52 +....+ 56 )
=> C chia hết cho 30
d) D= 45 + 99+ 180 chia hết cho 9
Do 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9
=> 45 + 99 + 180 chia hết cho 9
e) E = 1+ 3 + 32 + 33 + ......+ 3199
= (1+3+32) + (33 + 34 + 35) +......+ (3197 + 3198 + 3199)
= 13 + 33 (1+3+32) +.......+ 3197(1+3+32)
= 13 + 33 . 13 + ..... + 3197 .13
= 13. ( 1+ 33 +....+ 3197)
=> E chia hết cho 13
f)
Ta có: 1028 + 8 = 100...08 (27 chữ số 0)
Xét 008 chia hết cho 8 => 1028 + 8 chia hết cho 8 (1)
Mà 1+27.0+ 8 = 9 chia hết cho 9 => 1028 + 8 chia hết cho 9 (2)
Mà (8,9) =1 (3)
Từ (1); (2); (3) => 1028 + 8 chia hết cho (8.9)= 72
g)
ta có: G= 88 + 220 = (23)8 + 220 = 224 + 220 = 220 . 24 + 220 = 220 . (24 + 1) = 220 . 17
=> G chia hết cho 17
a) A = 1 + 3 + 3^2 + ... + 3^11
A = ( 1 + 3 + 3^2 ) + ... + ( 3^9 + 3^10 + 3^11 )
A = 1(1 + 3 + 3^2 ) + ... + 3^9 ( 1 + 3 + 3^2 )
A = 1 . 13 + ... + 3^9 . 13
A = 13 ( 1 + ... + 3^9 ) chia hết cho 13
còn mấy ý kia bạn chỉ cần tách nhóm rồi làm tương tự là ok
Good luck
a)
10^33 có dạng 10...00
=> 10^33 + 8 có dạng 10...08 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 8 = 9 chia hết cho 9 ( đpcm )
b)
10^10 có dạng 10...00
=> 10^10 + 14 có dạng 10...14 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 1 + 4 = 6 chia hết cho 3 ( đpcm )
10^33 có dạng 10...00
=> 10^33 + 8 có dạng 10...08 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 8 = 9 chia hết cho 9 ( đpcm )
b)
10^10 có dạng 10...00
=> 10^10 + 14 có dạng 10...14 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 1 + 4 = 6 chia hết cho 3