cho a+b >1 chungws minh rangwf a^4+b^4>=1/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Lời giải:
$a=b+1\Rightarrow a-b=1$
Khi đó:
$(a+b)(a^2+b^2)(a^4+b^4)=(a-b)(a+b)(a^2+b^2)(a^4+b^4)$
$=(a^2-b^2)(a^2+b^2)(a^4+b^4)=(a^4-b^4)(a^4+b^4)=a^8-b^8$
Ta có :
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\) ( Bất đẳng thức Bunhiacopski)
Mà lại có \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) (BĐT ....)
\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^2>\frac{1}{8}\cdot1=\frac{1}{8}\)(đpcm)
KL:.........
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}>\frac{1}{2}\)
\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}>\frac{1}{8}\)( đpcm )
Đẳng thức xảy ra <=> a = b = 1/2
Ta có : a + b > 1 > 0 (1)
Bình phương hai vế : (a + b)2 > 1 => a2 + 2ab + b2 > 1 (2)
Mặt khác (a - b)2 \(\ge\)0 => a2 - 2ab + b2 \(\ge\)0 (3)
Cộng từng vế của (2) hoặc (3) : \(2\left(a^2+b^2\right)>1\)=> a2 + b2 \(\ge\frac{1}{2}\)(4)
Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\frac{1}{4}\)(5)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\)=> a4 + 2a2b2 + b4 \(\ge\)0 (6)
Cộng từng vế (5) và (6) : \(2\left(a^4+b^4\right)>\frac{1}{4}\)=> \(a^4+b^4>\frac{1}{8}\)