Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y
(3x-5/9)^2002+(3y+0,4/3)^2004=0
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
Ta thấy \(\left(3x-\frac{5}{9}\right)^{2002}\ge0\text{ với mọi x}\\ \left(3y+\frac{0,4}{3}\right)^{2004}\ge0\text{ với mọi y}\)
Mà \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3x=\frac{5}{9}\\3y=\frac{-0,4}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{\frac{5}{9}}{3}\\y=\frac{\frac{-0,4}{3}}{3}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{27};\frac{-2}{45}\right)\)
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
Ta có: \(\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}\ge0;\forall x,y\\\left(3y+\frac{0,4}{3}\right)^{2004}\ge0;\forall x,y\end{matrix}\right.\)\(\Rightarrow\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}\ge0;\forall x,y\)
Do đó \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy ...
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
Ta thấy \(\left(3x-\frac{5}{9}\right)^{2002}\ge0\text{ với mọi x}\\ \left(3y+\frac{0,4}{3}\right)^{2004}\ge0\text{ với mọi y}\)
Mà \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3x=\frac{5}{9}\\3y=\frac{-0,4}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{\frac{5}{9}}{3}\\y=\frac{\frac{-0,4}{3}}{3}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{27};\frac{-2}{45}\right)\)
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
Ta có: \(\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}\ge0;\forall x,y\\\left(3y+\frac{0,4}{3}\right)^{2004}\ge0;\forall x,y\end{matrix}\right.\)\(\Rightarrow\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}\ge0;\forall x,y\)
Do đó \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy ...