Tìm a để :
\(2a^2+a-7⋮\left(a-2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)
\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)
phân tích ta được T=\(\frac{1}{a}\)
suy ra với a=1 hoặc a=-1 thi với mọi x thì t=a.
Nếu a<>1 va a<>-1 thì ko có x.
1) Để biểu thức có nghĩa thì \(a^2+2a-3\ge0\)
\(\Leftrightarrow\left(a+3\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-1\ge0\\a+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)
2) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a-1\ge0\\a\ne0\end{matrix}\right.\Leftrightarrow a\ge1\)
3) Để biểu thức có nghĩa thì \(a>0\)
4) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a-1\ge0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)
1) Để biểu thức có nghĩa \(\Rightarrow a^2+2a-3\ge0\Rightarrow\left(a-1\right)\left(a+3\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)
2) Để biểu thức có nghĩa \(\Rightarrow\dfrac{\left(a-1\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^3\ge0\\a\ne0\end{matrix}\right.\Rightarrow a\ge1\)
3) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a^2+1}{2a}\ge0\Rightarrow2a>0\Rightarrow a>0\)
4) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a-1}{2a+1}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\2a+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)
Thay vào ta được
\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:
Nếu mình làm như này có đúng không bạn:
\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
a) Ta có: \(A=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\cdot\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(1-x\right)}+x\right)\cdot\left(\dfrac{\left(1+x\right)\left(1-x+x^2\right)}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(x^2+x+x+1\right)\left(x^2-x-x+1\right)\right]\)
\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{1+x^2}\cdot\dfrac{1}{\left(x+1\right)^2\cdot\left(x-1\right)^2}\)
\(=\dfrac{x}{1+x^2}\)
b) Thay \(x=-\dfrac{1}{2}\) vào biểu thức \(A=\dfrac{x}{x^2+1}\), ta được:
\(A=\dfrac{-1}{2}:\left[\left(-\dfrac{1}{2}\right)^2+1\right]\)
\(\Leftrightarrow A=-\dfrac{1}{2}:\left(\dfrac{1}{4}+1\right)\)
\(\Leftrightarrow A=-\dfrac{1}{2}:\dfrac{5}{4}\)
\(\Leftrightarrow A=-\dfrac{1}{2}\cdot\dfrac{4}{5}\)
\(\Leftrightarrow A=\dfrac{-4}{10}\)
hay \(A=\dfrac{-2}{5}\)
Vậy: Khi \(x=-\dfrac{1}{2}\) thì \(A=\dfrac{-2}{5}\)
c) Để 2A=1 thì \(A=\dfrac{1}{2}\)
hay \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)
\(\Leftrightarrow2x=x^2+1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(không nhận)
Vậy: Không có giá trị nào của x để 2A=1
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
Ta có \(2a^2+a-7=2\left(a^2-4\right)+a-2+3\)
\(=\left(a-2\right)\left(2a+4+1\right)+3⋮a-2\)
\(\Rightarrow3⋮a-2\)
Tự giải tiếp !!!!!
ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ em nghĩ đề nó ko cho đk a thuộc Z nên ko làm như vậy đc đâu ạ!
Để \(2a^2+a-7⋮a-2\left(ĐK:a\ne2\right)\Leftrightarrow\frac{2a^2+a-7}{a-2}=k\inℤ\)
\(\Leftrightarrow2a^2+a-7=ka-2k\)
\(\Leftrightarrow2a^2+\left(1-k\right)a+2k-7=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{k-1+\sqrt{k^2-18k+57}}{4}\\a=\frac{k-1-\sqrt{k^2-18k+57}}{4}\end{cases}}\)(cái này phải dùng tới kiến thức lớp 9 để giải@@)