Tìm số tự nhiên x biết (2x+1)+(2x+2)+(2x+3)+...+(2x+100)=10050
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
(2x + 1) . (2x + 2) . (2x + 3) . (2x + 4) - 5y = 11879
[(2x + 1). (2x + 4)].[(2x + 2) . (2x + 3)] -5y = 11879
(4x2+10x+4).(4x2+10x+6) -5y = 11879
Đặt t= 4x2+10x+4
t(t+2) -5y = 11879
t2+2t-5y = 11879
(t+1)2 = 11880+5y
(4x2+10x+5)2 = 5(2376+y)
=> x = 0; y=-2371
a: =>41-(2x-5)=720:40=18
=>2x-5=23
=>2x=28
=>x=14
b: =>100x+5050=5750
=>100x=700
=>x=7
a: =>41-(2x-5)=720:40=18
=>2x-5=23
=>2x=28
=>x=14
b: =>100x+5050=5750
=>100x=700
=>x=7
(2x + 1) + (2x + 2) + (2x + 3) + ... + (2x + 100) = 10050
=> (2x + 2x + .... + 2x) + (1 + 2 + ... + 100) = 10050
=> 100 . 2x + 5050 = 10050
=> 200x = 5000
=> x = 25