Cho x,y>0.Chứng tỏ \(\frac{x}{y}+\frac{y}{x}\)lớn hơn hoặc bằng 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)
Ta có :\(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\)(Do \(xy=1\))
\(=x+y+\frac{2}{x+y}\)
\(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)
Đặt \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)
\(\Rightarrow A=B+C\)
Do x,y>0 nên ta áp dụng bất đẳng thức Cauchy
\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\)(1)
Ta có: \(x,y>0\Rightarrow x+y>0\)
Ta áp dụng bất đẳng thức \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x+y và 2
\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\)(2)
Từ (1) và (2)\(\Rightarrow B+C=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)
\(\Rightarrow A\ge3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\left(ĐPCM\right)\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x+\frac{1}{(x-y).y}=(x-y)+y+\frac{1}{(x-y).y}\geq 3\sqrt[3]{(x-y).y.\frac{1}{(x-y).y}}=3\)
Ta có đpcm.
Dấu "=" xảy ra khi \(x-y=y=\frac{1}{(x-y).y}\) hay $x=2; y=1$
Áp dụng BĐT Cô si ta có:
\(x+y\ge2\sqrt{xy}=2\cdot\frac{1}{\sqrt{z}};y+z\ge2\sqrt{yz}=2\cdot\frac{1}{\sqrt{x}};z+x\ge2\sqrt{xz}=2\cdot\frac{1}{\sqrt{y}}.\)( vì xyz=1)
=> P\(\ge\)\(\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}\)+ \(\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(\hept{\begin{cases}a=y\sqrt{y}+2z\sqrt{z}\\b=z\sqrt{z}+2x\sqrt{x}\\c=x\sqrt{x}+2y\sqrt{y}\end{cases}\left(a;b;c\ge0\right)}\)<=> \(\hept{\begin{cases}4a+b=2c+9z\sqrt{z}\\4b+c=2a+9x\sqrt{x}\\4c+a=2b+9y\sqrt{y}\end{cases}}\)
<=> \(\hept{\begin{cases}z\sqrt{z}=\frac{4a+b-2c}{9}\\x\sqrt{x}=\frac{4b+c-2a}{9}\\y\sqrt{y}=\frac{4c+a-2b}{9}\end{cases}}\)
Do đó:
P \(\ge\)\(\frac{2}{9}\cdot\left(\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}+\frac{4c+a-2b}{b}\right)\)
<=> P \(\ge\)\(\frac{2}{9}\left(4\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)-6\right)\)
<=> P \(\ge\frac{2}{9}\cdot\left(4\cdot3\cdot\sqrt[3]{\frac{a}{c}\cdot\frac{b}{a}\cdot\frac{c}{b}}+3\cdot\sqrt[3]{\frac{b}{c}\cdot\frac{c}{a}\cdot\frac{a}{b}}-6\right)\)( Áp dụng BĐT Cô si cho 3 số ko âm)
<=> P \(\ge\frac{2}{9}\left(12+3-6\right)=2\)( đpcm)
Dấu = khi x=y=z=1.
(*) CM BĐT : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) ( biến đổi tương đương là được )
Áp dụng :
\(2\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\ge\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
TA có : \(x+\frac{1}{x}+y+\frac{1}{y}=4x+\frac{1}{x}+4y+\frac{1}{y}-3\left(x+y\right)\)
\(\ge4+4-3=5\) ( theo cô - si )
=> 2\(2\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\ge25\) => ĐPCM
Dấu '' = '' xảy ra khi x = y= 0,5
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
Ta chứng minh \(\frac{x^4+y^4}{x^2+y^2}\ge\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2+y^2}=\frac{x^2+y^2}{2}\)
Tương tự và cộng lại
\(\Rightarrow VT\ge x^2+y^2+z^2\ge xy+xz+yz=3\)
Ta có:
\(\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4.\frac{x}{y}.\frac{y}{x}\)
\(=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\) với mọi x y >0
Vì x, y >0 => \(\frac{x}{y}+\frac{y}{x}>0\) mà \(\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\)
=> \(\frac{x}{y}+\frac{y}{x}\ge2>\frac{1}{2}\)với mọi x, y >0
"=" xảy ra <=> x =y
Em kiểm tra lại đề bài nha.