Hỏi số tự nhiên k nhỏ nhất là bao nhiêu sao cho trong k số tự nhiên phân biệt bất kỳ không vượt quá 100, ta luôn có hai số mà số này là bội của số kia.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét k = 100 ta dễ dàng tìm được một tập hợp n số trong đó không số nào là bội của số kia
\(\left\{101;102;...;200\right\}\)
Ta chứng minh với k = 101 thì bài toán đúng.
Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_2;...;a_{101}\right\}\)
Ta biểu diễn chúng thành dạng:
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)
với \(x_1;x_2;...;x_{101}\)là các số tự nhiên và \(b_1;b_2;...;b_{101}\)là các số lẻ.
Ta thấy từ 1 đến 199 có 100 số lẻ vì vậy trong 101 số đã cho tồn tại 2 số m > n sao cho bm = bn.Hai số này là bội của nhau.
Vậy giá trị nhỏ nhất của k là 101
Nguồn: Câu hỏi của Đỗ Hoàng Phương - Toán lớp 7 | Học trực tuyến
Trong dãy 1;3;5;...;199 có 45 số nguyên tố.
Vậy chọn k=46 thỏa mãn đề bài
xét k=100
dễ dàng tìm được tập số có n số mà trong đó ko có số nào là bội của số kia \(\left\{101,102,...,200\right\}\)
ta chứng minh k=101 thì bài toán đúng
ta lấy ngẫu nhiên 101 số từ tập 200 số đã cho
\(\left\{a_1,a_2,...,a_{101}\right\}\)
ta biểu diễn 101 số này thành dạng
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2\)
.....
\(a_{101}=2^{x_{101}}.b_{101}\)
zới \(x_1,x_2,...,x_{101}\)là các số tự nhiên . \(b_1,b_2,...,b_{101}\)là các số lẻ zà \(1\le b_1,b_2,...,b_{101}\)
ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ , zì thế trong 101 số đã chọn tồn tại\(m>n\)sao cho \(b_m=b_n\). hai số này là bội của nhau
zậy k nhỏ nhất là 101 thì thỏa mãn yêu cầu đề bài
Tích của 5 số bất kì trong 16 số là số chẵn suy ra trong 5 số bất kì được chọn luôn có ít nhất 1 số chẵn.
Do đó có tối thiểu 12 số chẵn. Để tổng S là nhỏ nhất thì số chẵn là 2, còn số lẻ là 1, do đó ta cần số số chẵn là ít nhất.
Nếu có 12 số chẵn số số lẻ là 4 do đó tổng S sẽ là số chẵn.
Nếu có 13 số chẵn: \(S=2\times13+1\times3=29\).
Trong 1 tích 1 trong các thừa số là số chẵn thì tích là 1 số chẵn
Theo đề bài trường hợp tích của 5 số bất kỳ là 1 số lẻ thì ít nhất trong 12 số phải có 5 số lẻ, vậy để tích 5 số bất kỳ luôn là 1 số chẵn thì số các số lẻ nhiều nhất là 4 số
Tổng nhỏ nhất của 5 số ngày là tổng của dãy
1+2+3+4+5+6+7+8+10+12+14+16=88
Tổng đó là
j đây,ko có j thì báo cáo nhé
sorry, mình paste câu hỏi nhưng ấn nhầm. câu đó mình làm được rồi