K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

 A = 1000000000000000000..........0000000000000+ 8=10000000000000000................00000000000008

1 so chia het cho 18 thi chia het cho 2 va 9

Ta co :

10000000.................8 chia het cho2                                   (1)

1 + 0 + 0 +0+................+0+0+8=9chia het cho9                                    (2)

Tu (1) va (2) suy ra A  chia het cho 18

 

 

11 tháng 12 2020

10000...0+8=1000...08 (có 2014 chữ số 0)

\(1000...08⋮2\)

\(1000...08⋮9\)

2 và 9 là 2 số nguyên tố cùng nhau nên \(1000...08⋮18\)

21 tháng 2 2021

a) Ta có:

(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.  

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) 

\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)

\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)

\(\equiv 23.2^n\equiv 0\pmod {23}\)

Ta có đpcm.

b) 

\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$

Mặt khác:

Nếu $n=3k+1$:

$2^{2n+2}+24n+14=2^{6k+4}+72k+38$

$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$

Nếu $n=3k$:

$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$

$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$

Nếu $n=3k+2$:

$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$

$\equiv 63+72k\equiv 0\pmod 9$

Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)

Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)

 

14 tháng 2 2017

20 hay sao ay ban a

kb voi mk nha nha nha 

tk mk nha nha nha

mk se k va kb lai

28 tháng 10 2017

1-2-3-4-...-1 0000...0 hơi sai sai. Số bé làm sao trừ được số lớn, lớp 5 cũng chưa học số âm?