K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

a)

Theo đề bài: \(n^2+4n+10⋮n+4\)

=> \(n\left(n+4\right)+10⋮n+4\)

mà \(n\left(n+4\right)⋮n+4\)

=> \(10⋮n+4\)

=> \(n+4\in\left\{1;2;5;10\right\}\)

+) n + 4 =1 loại

+) n+4 =2 loại

+) n + 4 = 5 

     n      = 5 - 4

      n     = 1 thử lại thỏa mãn.

+) n + 4 = 10

   n   = 10 - 4 

   n   =    6 thử lại thỏa mãn.

Vậy n =1 hoặc n = 6.

b)

Có:  \(2n+3⋮3-n\)

    \(6-2n=2\left(3-n\right)⋮3-n\)

=> \(2n+3+6-2n⋮3-n\)

=> \(9⋮3-n\)

=> \(3-n\in\left\{1;3;9\right\}\)

+) 3 - n = 1

         n = 3 -1 

        n = 2 thử lại thỏa mãn.

+) 3 - n = 3

         n = 3 -3 

         n = 0  thử lại thỏa mãn

+) 3 - n = 9 loại

Vậy n =2 hoặc n =0.

22 tháng 10 2019

biết bài b thui b n e { 0 ; 2 }

27 tháng 10 2021

a. n + 4 \(⋮\) n

\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)

\(⋮\) n 

\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}

\(\Rightarrow\) n \(\in\) {1; 2; 4}

27 tháng 10 2021

b. 3n + 11 \(⋮\) n + 2

3n + 6 + 5 \(⋮\) n + 2

3(n + 2) + 5 \(⋮\) n + 2

\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{​​}⋮n+2\\5⋮n+2\end{matrix}\right.\)

\(\Rightarrow\) 5 \(⋮\) n + 2

\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}

n + 215
nvô lí3

\(\Rightarrow\) n = 3

22 tháng 10 2021

a: Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

5 tháng 2 2022

có vẻ hơi ngắn

 

5 tháng 8 2021

mik xin lỗi, câu a) là n+2 chia hết cho n-4 nhé

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
a.

$2n+7\vdots n+2$

$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$

$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
 tự nhiên)

$\Rightarrow n\in\left\{-1;1\right\}$

Vì $n$ là số tự nhiên nên $n=1$
b.

$4n-5\vdots 2n-1$

$\Rightarrow 2(2n-1)-3\vdots 2n-1$

$\Rightarrow 3\vdots 2n-1$

$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$

$\Rightarrow n\in\left\{1;0; 2; -1\right\}$

Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$

a: \(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

b: \(\Leftrightarrow3n-3+8⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)

c: \(\Leftrightarrow4n+6+4⋮2n+3\)

\(\Leftrightarrow2n+3\in\left\{1;-1\right\}\)

hay \(n\in\left\{-1;-2\right\}\)

d: \(\Leftrightarrow15n+18⋮3n+1\)

\(\Leftrightarrow15n+5+13⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)

hay \(n\in\left\{0;4\right\}\)

2 tháng 1 2016

       Ta có : 3n chia hết cho 5-2n

       Suy ra :2x3n chia hết cho 5-2n

       hay 6n chia hết cho 5-2n                     (1)

       Lại có :5-2n chia hết cho 5-2n

       Suy ra :3x(5-2n) chia hết cho 5-2n

       hay 15-6n chia hết cho 5-2n                  (2)

       Từ (1) và (2) suy ra

       6n+(15-6n) chia hết cho 5-2n

       hay 15 chia hết cho 5-2n 

       Suy ra 5-2n E Ư(15)={1;3;5;15}

       -Xét trường hợp 1

5-2n=1

2n   =5-1

2n   =4

n     =2   (thỏa mãn n E   N)

       -Xét trường hợp 2

5-2n =3

2n    =5-3

2n    =2 

n     =1  (thỏa mãn n E   N)

       -Xét trường hợp 3

5-2n=5

2n   =5-5

2n   =0

n     =0   (thỏa mãn n E  N)

        -Xét trường hợp 4

5-2n=15

2n   =5-15

2n   =-10

n     =-5  (loại vì n không thuộc N)

       Vậy n E  {0;1;2}

 

2 tháng 1 2016

cái này dễ còn phải hỏi

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}