K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

\(-2x^2+x-1=-2\left(x^2-\frac{1}{2}x+\frac{1}{2}\right)\)

\(=-2\left(x^2-\frac{1}{2}x+\frac{1}{16}+\frac{7}{16}\right)\)

\(=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{7}{16}\right]\)

\(=-2\left[\left(x-\frac{1}{4}\right)^2\right]-\frac{7}{8}\le\frac{-7}{8}\)

21 tháng 10 2019

Đặt biểu thức trên là A ,ta có :

\(A=-2x^2+x-1\)

\(A=-2\left(x^2-\frac{1}{2}x+\frac{1}{2}\right)\)

\(A=-2\left(x^2-\frac{1}{2}x+\frac{1}{16}+\frac{7}{16}\right)\)

\(A=-2[\left(x-\frac{1}{4}\right)^2+\frac{7}{16}]\)

\(A=-2\left(x-\frac{1}{4}\right)^2-\frac{7}{8}\ge\frac{-7}{8}\)

Dấu bằng xảy ra

\(\Leftrightarrow\left(x-\frac{1}{4}\right)^2=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy...................................

29 tháng 11 2021

\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân VTV

\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)

29 tháng 11 2021

\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)

NV
17 tháng 7 2021

Biểu thức này không tồn tại cả min lẫn max

17 tháng 7 2021

Em cần lời giải với thầy ạ, em làm đến phần đặt ẩn thì không tách nó ở dạng ax^2 + bx + c được nữa ạ

 

NV
21 tháng 1 2024

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)

\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)

\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)

1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)

=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

 

3 tháng 9 2021

Mk cần đáp án gấp ạ.(khoảng 20-30p)gianroi

NV
2 tháng 3 2021

Xét \(g\left(x\right)=\dfrac{2x^2+x-1}{x^2-x+1}\)

\(g\left(x\right)=\dfrac{3x^2-\left(x^2-x+1\right)}{x^2-x+1}=\dfrac{3x^2}{x^2-x+1}-1\ge-1\)

\(g\left(x\right)=\dfrac{3\left(x^2-x+1\right)-x^2+4x-4}{x^2-x+1}=3-\dfrac{\left(x-2\right)^2}{x^2-x+1}\le3\)

\(\Rightarrow-1\le g\left(x\right)\le3\Rightarrow0\le\left|g\left(x\right)\right|\le3\)

\(\Rightarrow y_{max}=3\) khi \(x=2\)

19 tháng 12 2016

M=\(\frac{x^2+10x-7}{x^2+2x+1}=\frac{x^2+10x+25-32}{x^2+2x+1}=\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\le-32\)

Vay Max la -32 

Mk cx k chắc lắm đâu .