K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2019

60 nha bạn

29 tháng 10 2019

61 hihihi mình nhầm

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

29 tháng 4 2020

1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4

a) rút gọn P

b) tìm x để P>1/3

c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên

2. Cho 2 biểu thức

A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25

a) tính giá trị của A khi x= 6-2√5

b) rút gọn B

c) tìm a để pt A-B=a có nghiệm

chúc bạn học tốt

Bài 1 :

\(a,P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2x-6}{x\left(x+6\right)}\)

\(=\frac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}=\frac{6\left(2x-6\right)}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}\)

\(=\frac{6}{x-6}\)

\(b,\)Với \(x\ne-6;x\ne6;x\ne0;x\ne3\)  Thì

\(P=1\Rightarrow\frac{6}{X-6}=1\Rightarrow6=x-6\Rightarrow x=12\)(Thỏa mãn \(ĐKXĐ\))

\(c,\)Ta có :

\(P< 0\Rightarrow\frac{6}{X-6}< 0\Rightarrow X-6< 0\Rightarrow X< 6\)

Do :  \(x\ne-6;x\ne6;x\ne0;x\ne3\)  ,Nên với \(x< 6\)và  \(x\ne-6;x\ne0;x\ne3\)  thì \(P< 0\)

a: \(T=\dfrac{3}{2}x^4-x^3+3x^2-\dfrac{1}{2}x+6+x^4+\dfrac{2}{3}x^3-2x^2-4x+1\)

\(=\dfrac{5}{2}x^4-\dfrac{1}{3}x^3+x^2-\dfrac{9}{2}x+7\)

b: \(T\left(2\right)=\dfrac{5}{2}\cdot16-\dfrac{1}{3}\cdot8+4-\dfrac{9}{2}\cdot2+7=\dfrac{118}{3}\)

17 tháng 3 2023

cậu biết làm văn ko

 

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

DT
23 tháng 11 2023

\(\dfrac{3x^2+6x+15}{x^2+2x+3}=\dfrac{3\left(x^2+2x+3\right)+6}{x^2+2x+3}\\ =3+\dfrac{6}{x ^2+2x+3}\)

Nhận thấy : \(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)

\(=>\dfrac{6}{x^2+2x+3}\le\dfrac{6}{2}=3\)

\(=>3+\dfrac{6}{x^2+2x+3}\le3+3=6\\ =>\dfrac{3x^2+6x+15}{x^2+2x+3}\le6\)

Dấu = xảy ra khi : x+1=0 hay x=-1

Vậy GTLN của đa thức là : 6 tại x = -1

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0

27 tháng 12 2021

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)