giúp mik với
Đề là: bài 3/ trang 108
Lớp 7 sgk toán tập 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý tổng ba góc trong một tam giác bằng 180º ta có:
- Hình 47
x + 90o + 55o = 180o
x = 180o - 90o - 55o
x = 35o
- Hình 48
x + 30o + 40o = 180o
x = 180o - 30o - 40o
x = 110o
- Hình 49
x + x + 50o = 180o
2x = 180o - 50o
x = 65o
Áp dụng định lý góc ngoài của tam giác ta có:
- Hình 50
y = 60o + 40o
y = 100o
x + 40o = 180o (2 góc kề bù)
x = 140o
- Hình 51
Áp dụng định lý góc ngoài trong tam giác ABD có: x = 70º + 40º = 110º
Áp dụng định lý tổng ba góc trong tam giác ADC có:
y + 110º + 40º = 180º ⇒ y = 30º.
a) Xác định các điểm –a, -b trên trục số;
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số;
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0.
Hình 53
Lời giải:
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số ⇒ a là số nguyên âm nên a < 0.
Do đó: -a = |-a| = |a| > 0.
b ở bên phải trục số ⇒ b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
tk cho mk nha
a) Xác định các điểm –a, -b trên trục số;
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số;
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0.
Hình 53
Lời giải:
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số ⇒ a là số nguyên âm nên a < 0.
Do đó: -a = |-a| = |a| > 0.
b ở bên phải trục số ⇒ b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
tk cho mk nha
a) 2n = 16/2=8= 23 => n =3
b) (-3)n = (-27).81 =(-3)3.34= (-3)7 => n = 7
c) 4 =22= 23n.2n = 23n-n = 22n => n =1
bạn cứ gõ lên goole bài 45 sgk tr99 toán 7 tập 1 sẽ có . tick nha
\(Xét\Delta ABCvà\Delta ADEcó:\)
AB=AD
góc A chung
AC=AE
\(\Rightarrow\Delta ABC=\Delta ADE\) (c-g-c)
TL
a) Ta có ˆBIKBIK^ là góc ngoài tại đỉnh II của ΔBAIΔBAI.
Nên ˆBIK=ˆBAI+ˆABI>ˆBAIBIK^=BAI^+ABI^>BAI^
Mà ˆBAK=ˆBAIBAK^=BAI^
Vậy ˆBIK>ˆBAKBIK^>BAK^ (1)
b) Ta có ˆCIKCIK^ là góc ngoài tại đỉnh II của ΔAICΔAIC
nên ˆCIK=ˆCAI+ˆICA>ˆCAICIK^=CAI^+ICA^>CAI^
Hay ˆCIK>ˆCAICIK^>CAI^ (2)
Từ (1) và (2) ta có:
ˆBIK+ˆCIK>ˆBAK+ˆCAIBIK^+CIK^>BAK^+CAI^
⇒ˆBIC>ˆBAC⇒BIC^>BAC^.
Hok tốt nha bn
#Kirito
gõ lên cốc cốc học tập nhé bạn