Chứng minh: a5- b5 = (a-b)(a4+a3b+a2b2+ab3+b4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)
Áp dụng BĐT cosi với 2 số không âm:
`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`
Hoàn toàn tương tự:
`b^4+a^4+a^4+a^4>=4a^3b`
`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`
`<=>4(a^4+b^4)>=4(ab^3+a^3b)`
`<=>a^4+b^4>=ab^3+a^3b`
Đề bài sai
Phản ví dụ:
\(a=-1;b=1\) thì \(\left(a^2+b^2\right)\left(a^4+b^4\right)=4\)
Trong khi \(\left(a+b\right)\left(a^5+b^5\right)=0\)
\(4< 0\) là sai
BĐT này chỉ đúng với a;b là các số thực không âm (hoặc dương), hoặc cùng dấu
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
Bài này lớp 6 mà bạn
Đặt c1=a1-b1, ... , c5=a5-b5.
Có c1+ c2 + ...+ c5
= (a1-b1)+(a2-b2)+...+(a5-b5)
= (a1+a2+...+a5)-(b1+b2+...+b5)
=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)
=> Trong 5 số c1,...,c5 có một số chẵn vì từ c1 đến c5 có 5 số
=> Trong các số a1-b1,...,a2-b2 có một số chẵn
Vậy ... (đpcm)
\(\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(-b\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b+a^2b^3+ab^4\)
\(-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\left(đpcm\right)\)