Bài 1: Phân tích
a) 25x4 - \(\frac{1}{9}y^2\)
b) ( x+5) y2- (x+5). 3
c) x2- 3
d) x2- 16x2y2z2
( giúp mink vs mink đag cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=3mx+1-m^2\)
\(\Leftrightarrow x^2-3mx+m^2-1=0\)
Để (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt
\(\Leftrightarrow\text{Δ}\ge0\)
\(\Leftrightarrow\left(-3m\right)^2-4\cdot1\cdot\left(m^2-1\right)\ge0\)
\(\Leftrightarrow9m^2-8m^2+4\ge0\)
\(\Leftrightarrow m^2+4\ge0\)(luôn đúng)
Suy ra: (P) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1\cdot x_2=m^2-1\\x_1+x_2=3m\end{matrix}\right.\)
Theo đề, ta có phương trình: \(3m=2\cdot\left(m^2-1\right)\)
\(\Leftrightarrow2m^2-2-3m=0\)
\(\Leftrightarrow2m^2-4m+m-2=0\)
\(\Leftrightarrow2m\left(m-2\right)+\left(m-2\right)=0\)
\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\2m=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: Để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn \(x_1+x_2=2x_1x_2\) thì \(m\in\left\{2;-\dfrac{1}{2}\right\}\)
Xét phương trình hoành độ giao điểm parabol $(P)$ và đường thẳng $(d)$
Có: $x^2=3mx+1-m^$
$⇔x^2-3mx+m^2-1=0(1)$
Xét phương trình (1) có dạng $ax^2+bx+c=0$ với
$\begin{cases}a=1 \neq 0\\b=-3m\\c=m^2-1\end{cases}$
$⇒pt(1)$ là phương trình bậc hai một ẩn $x$
Có $\delta=b^2-4ac=9m^2-4.1.(m^2-1)=5m^2+4>0 \forall m$
suy ra $pt(1)$ có 2 nghiệm phân biệt $x_1;x_2$
Theo hệ thức Viete có: $\begin{cases}x_1+x_2=\dfrac{-b}{a}=3m\\x_1.x_2=\dfrac{c}{a}=m^2-1\end{cases}$
Nên $x_1+x_2=2x_1.x_2$
$⇔3m=2.(m^2-1)$
$⇔2m^2-3m-2=0$
$⇔(m-2)(2m+1)=0$
$⇔$\(\left[{}\begin{matrix}m=2\\m=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy $m∈2;\dfrac{-1}{2}$ thỏa mãn đề
Đặt \(\dfrac{1}{x+1}\) = a; \(\dfrac{1}{y}\) = b (x \(\ne\) -1; y \(\ne\) 0)
Khi đó hpt trên tương đương:
\(\left\{{}\begin{matrix}a+b=\dfrac{-1}{2}\\8a+9b=-5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}8a+8b=-4\\8a+9b=-5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-b=1\\8a+9b=-5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=-1\\8a+9\left(-1\right)=-5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=-1\\8a=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=-1\\a=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{2}\\\dfrac{1}{y}=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+1=2\\y=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (TM)
Vậy hpt có nghiệm duy nhất (x; y) = (1; -1)
Chúc bn học tốt!
ĐK: ( x ≠ 1 ; y ≠ 0 )
Đặt a = \(\dfrac{1}{x+1} \) ; b = \(\dfrac{1}{y}\) . Ta có hệ phương trình
\(\begin{cases} a + b = \dfrac{-1}{2}\\ 8a + 9b = -5 \end{cases} \)
⇔\(\begin{cases} 8a + 8b = -4 \\ 8a + 9b = -5 \end{cases} \) ⇔ \(\begin{cases} -b = 1 \\ a + b = \dfrac{-1}{2} \end{cases} \) ⇔ \(\begin{cases} b = - 1 \\ a = \dfrac{1}{2} \end{cases} \)
=> \(\begin{cases} \dfrac{1}{y}=-1 \\\dfrac{1}{x+1}= \dfrac{1}{2} \end{cases} \) ⇔ \(\begin{cases} y = - 1\\ x = 1 \end{cases} \)
Vậy hpt có nghiệm duy nhất \(\begin{cases} y = - 1\\ x = 1 \end{cases} \)
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
Ta có: \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2y\right)+y=5m-1\\x=m+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+4y+y-5m=-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y-3m=-1\\x=m+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-1}{5}\\x=m+2\cdot\dfrac{3m-1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m}{5}+\dfrac{6m-2}{5}=\dfrac{11m-2}{5}\\y=\dfrac{3m-1}{5}\end{matrix}\right.\)
Để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\) thì \(\left(\dfrac{11m-2}{5}\right)^2-2\cdot\left(\dfrac{3m-1}{5}\right)^2=-2\)
\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-2\cdot\dfrac{9m^2-6m+1}{25}=-2\)
\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-\dfrac{18m^2-12m+2}{25}=-2\)
\(\Leftrightarrow\dfrac{103m^2-32m+2}{25}=\dfrac{-50}{25}\)
\(\Leftrightarrow103m^2-32m+2+50=0\)
\(\Leftrightarrow103m^2-32m+52=0\)
\(\Delta=\left(-32\right)^2-4\cdot103\cdot52=-20400\)
Vì \(\Delta< 0\) nên phương trình vô nghiệm
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\)
a)4(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
<=>72 - 20x - 36x +84 = 30x - 240 - 6x 84
<=> -80x = -480
<=> x = 6
b) 5(3x+5)-4(2x-3) =5x+3(2x+12)+1
<=> 15x + 25 - 8x + 12 = 5x + 6x + 36 + 1
<=> 15x + 25 - 8x + 12 - 5x - 6x - 36 - 1 = 0
<=> -4x = 0
<=> x = 0
c) 2(5x-8)-3(4x-5)=4(3x-4)+11
= 10x - 16 - 12x + 15 = 12x - 16 + 11
= -14x = -4
= x =\(\frac{2}{7}\)
d) 5x-3{4x-2[4x-3(5x-2)]}=182
= 5x - 3 . [4x - 2(4x - 15x + 6)]
= 5x - 3 . (4x - 8x + 30x - 12)
= 5x - 12x + 24x - 90x + 36
= -73x + 36 = 182
=> -73x = 182 - 36 = 146
=> x = 146 : (-73) = -2
~Hok tốt~
Bài 1:
a) \(25x^4-\frac{1}{9}y^2\)
\(=\left(5x^2\right)^2-\left(\frac{1}{3}y\right)^2\)
\(=\left(5x^2-\frac{1}{3}y\right).\left(5x^2+\frac{1}{3}y\right)\)
c) \(x^2-3\)
\(=x^2-\left(\sqrt{3}\right)^2\)
\(=\left(x-\sqrt{3}\right).\left(x+\sqrt{3}\right)\)
d) \(x^2-16x^2y^2z^2\)
\(=x^2-\left(4xyz\right)^2\)
\(=\left(x-4xyz\right).\left(x+4xyz\right)\)
Chúc bạn học tốt!
b, \(\left(x+5\right)y^2-\left(x+5\right)3\)
\(=\left(x+5\right)\left(y^2.3\right)\)