K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

Mong các bạn ủng hộ cho kênh youtube của mình nha !!

Tên youtube:P Music

Link:https://www.youtube.com/channel/UCs0JKZKs4zoDYqqtAmtiBBA?view_as=subscriber

Nhóm của mình gồm có:
Hậu Trần YTVN

Vanh_GoG_VN

M.Ichibi

P Music(là mình)

Mong các bạn ủng hộ nha !!

26 tháng 10 2020

\(\text{méo biết}\)

11 tháng 4 2021

= căn xy + căn x + căn y còn lại tự tính

27 tháng 9 2015

a) +) Điều kiện : x \(\ge\) 0 ; y \(\ge\) 0 ; y \(\ne\) 1 ; x; y không đồng thời bằng 0

+) \(P=\frac{x\left(\sqrt{x}+1\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{x\sqrt{x}+x-y+y\sqrt{y}-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\left(x\sqrt{x}+y\sqrt{y}\right)+\left(x-y\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{x+y-\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(x+\sqrt{x}\right)+\left(y-xy\right)-\left(\sqrt{xy}+\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(1+\sqrt{x}\right)\sqrt{x}+y\left(1-x\right)-\sqrt{y}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\left(1+\sqrt{x}\right)\left(\sqrt{x}+y-y\sqrt{x}-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-y\sqrt{x}\right)+\left(y-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}=\frac{\sqrt{x}\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}\)

\(P=\sqrt{x}\left(1+\sqrt{y}\right)-\sqrt{y}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)

b) Để P = 2 <=> \(\sqrt{x}-\sqrt{y}+\sqrt{xy}=2\) <=> \(\sqrt{x}+\sqrt{xy}=\sqrt{y}+2\)

<=>  \(\left(\sqrt{x}+\sqrt{xy}\right)^2=\left(\sqrt{y}+2\right)^2\)

<=> \(x+xy+2x\sqrt{y}=y+4+4\sqrt{y}\)

<=> \(x+xy-y+\left(2x-4\right)\sqrt{y}=4\)(*)

P = 2 <=> (x; y) thỏa mãn (*)

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

1 tháng 8 2017

Thay  \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)  ta có

\(1+x=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

Tương tự  \(1+y=\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)  và  \(1+z=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)

và  \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{z}+\sqrt{x}\right)+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

Do đó P = 2