K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

nhanh tay len

Bài 1: Tìm các số tự nhiên  a,b sao cho: a, a ϵ Ư(20) và a > 4 b, b ϵ B(5) và b ≤ 35 Bài 2: Xét xem mỗi tổng(Hiệu) sau có chia hết cho 15 không? a, 30 + 45 40 + 5 + 300 b, 1500 - 23 450 - 31 145 + 5 - 17 Bài 3:Cho A = 24 + 42 + x với x ϵ N.Tìm x để: a, A chia hết cho 6 b, A không chia hết cho 6 Bài 4:Các tích sau có chia hết cho 8 hay không?Tại sao? a, 40.7.25 b, 32.19.28 c, 4.35.2.39 d, 14.27.4.15 Bài 5: Tích A = 2.4.6...10.12 có chia hết cho 80...
Đọc tiếp

Bài 1: Tìm các số tự nhiên  a,b sao cho:

a, a ϵ Ư(20) và a > 4

b, b ϵ B(5) và b ≤ 35

Bài 2: Xét xem mỗi tổng(Hiệu) sau có chia hết cho 15 không?

a, 30 + 45

40 + 5 + 300

b, 1500 - 23

450 - 31

145 + 5 - 17

Bài 3:Cho A = 24 + 42 + x với x ϵ N.Tìm x để:

a, A chia hết cho 6

b, A không chia hết cho 6

Bài 4:Các tích sau có chia hết cho 8 hay không?Tại sao?

a, 40.7.25

b, 32.19.28

c, 4.35.2.39

d, 14.27.4.15

Bài 5: Tích A = 2.4.6...10.12 có chia hết cho 80 hay không?

Bài 6: Các tổng sau có chia hết cho 10 hay không?Tại sao?

a, 2.4.6.8.10+310

b,1.2.3.4.5+230

c,3.5.7.9+25+50

Bài 7: Có bao nhiêu cách chia đều 30 học sinh thành các nhóm học tập có từ 4 đến 6 học sinh trong một nhóm?

Bài 8: Cho A= 4 + 4^2 + 4^3 + 4^4 + ...+ 4^12.Chứng minh rằng:

a, A chia hết cho 4

b, A chia hết cho 5

c, A chia hết cho 21

Bài 9: Tìm các số tự nhiên x sao cho:

2⋮x

2 ⋮ (x + 1)

2 ⋮ (x + 2)

2 ⋮ (x - 1)

2 ⋮ ( x - 2)

2 ⋮ (2 - x)

6 ⋮ x

6 ⋮ ( x + 1)

6 ⋮ (x + 2)

6 ⋮ ( x - 1)

6 ⋮ ( x - 2)

6 ⋮ ( 2 - x)

Các bạn ơi giúp mình với ạ,mình đang cần gấp !!!!!!

 

1
18 tháng 9 2023

Bài 1:

a, a ϵ Ư(20) nên a ϵ {1; 2; 4; 5; 10; 20; -1; -2; -4; -5; -10; -20}.

Mà a > 4 nên a ϵ {5; 10; 20}

b, b ϵ B(5) nên b ϵ {...; -10; -5; 0; 5; 10; 15; 20; 25; 30; 35; ...}

Mà b ≤ 35 nên b ϵ {...; -10; -5; 0; 5; 10; 15; 20; 25; 30; 35}

Bài 2:

a,

30 + 45 = 75, tổng chia hết cho 15.

40 + 5 + 300 = 45 + 300. Vì mỗi số hạng chia hết cho 15 nên tổng chia hết cho 15.

b,

Vì số bị trừ chia hết cho 15 mà số trừ không chia hết cho 15 nên các hiệu 1500 - 23; 450 - 31 không chia hết cho 15. 

145 + 5 - 17 = 150 - 17, số bị trừ chia hết cho 15 nhưng số trừ không chia hết cho 15 nên 145 + 5 - 17 không chia hết cho 15.

Bài 3:

a, Để A chia hết cho 6 thì x chia hết cho 6 (do các số hạng chia hết cho 6).

b, Từ câu a, suy ra để A không chia hết cho 6 thì x không chia hết cho 6.

Bài 4:

a, Tích 40.7.25 chia hết cho 8 vì 40 chia hết cho 8.

b, Tích 32.19.28 chia hết cho 8 vì 32 chia hết cho 8.

c, 4.35.2.39 = 8.35.39, tích này chia hết cho 8 vì 8 chia hết cho 8.

d, 14.27.4.15 = 56.27.15, tích này chia hết cho 8 vì 56 chia hết cho 8.

Bài 5: Tích A = 2.4.6...10.12 = (2.4.10).6.8.12 = 80.6.8.12, suy ra tích A chia hết cho 80 vì 80 chia hết cho 80.

Bài 6:

a, Tổng 2.4.6.8.10 + 310 chia hết cho 10 vì các số hạng chia hết cho 10.

b,1.2.3.4.5 + 230 = 10.3.4 + 230, tổng chia hết cho 10 vì các số hạng chia hết cho 10.

c, Xét 3.5.7.9 + 25, tổng này chia hết cho 5 vì mỗi số hạng chia hết cho 5, và tổng cũng chia hết cho 2 vì tổng này bằng tổng của 2 số lẻ. Do đó 3.5.7.9 + 25 chia hết cho 10.

Lại có 50 chia hết cho 10 nên 3.5.7.9 + 25 + 50 chia hết cho 10.

Bài 7: bỏ qua

Bài 8: Cho A= 4 + 4^2 + 4^3 + 4^4 + ...+ 4^12.Chứng minh rằng:

a, A chia hết cho 4 vì mỗi số hạng chia hết cho 4.

b,

\(A=4+4^2+...+4^{12}=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{11}+4^{12}\right)\)

\(A=4\left(1+4\right)+4^2\left(1+4\right)+...+4^{11}\left(1+4\right)=\left(4+4^2+...+4^{11}\right)5\)

Do đó A chia hết cho 5.

c,

\(A=4+4^2+...+4^{12}=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{10}+4^{11}+4^{12}\right)\)

\(A=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{10}\left(1+4+4^2\right)=\left(4+4^4+...+4^{10}\right)21\)

Do đó A chia hết cho 21.

Bài 9:

2 ⋮ x 

x ϵ Ư(2) hay x ϵ {1; 2; -1; -2}, vì x là số tự nhiên nên x ϵ {1; 2}

2 ⋮ (x + 1)

(x + 1) ϵ Ư(2) hay (x + 1) ϵ {1; 2; -1; -2}

x ϵ {0; 1; -2; -3}, vì x là số tự nhiên nên x ϵ {0; 1}

2 ⋮ (x + 2)

(x + 2) ϵ Ư(2) hay (x + 2) ϵ {1; 2; -1; -2}

x ϵ {-1; 0; -3; -4}, vì x là số tự nhiên nên x ϵ {0}

2 ⋮ (x - 1)

(x - 1) ϵ Ư(2) hay (x - 1) ϵ {1; 2; -1; -2}

x ϵ {2; 3; 0; -1}, vì x là số tự nhiên nên x ϵ {2; 3; 0}

2 ⋮ (x - 2)

(x - 2) ϵ Ư(2) hay (x - 2) ϵ {1; 2; -1; -2}

x ϵ {3; 4; 1; 0}, vì x là số tự nhiên nên x ϵ {3; 4; 1; 0}

2 ⋮ (2 - x)

(2 - x) ϵ Ư(2) hay (2 - x) ϵ {1; 2; -1; -2}

x ϵ {1; 0; 3; 4}, vì x là số tự nhiên nên x ϵ {1; 0; 3; 4}

6 ⋮ x

x ϵ Ư(6) hay x ϵ {1; 2; 3; 6; -1; -2; -3; -6}, vì x là số tự nhiên nên x ϵ {1; 2; 3; 6}

6 ⋮ (x + 1)

(x + 1) ϵ Ư(6) hay (x + 1) ϵ {1; 2; 3; 6; -1; -2; -3; -6}

x ϵ {0; 1; 2; 5; -2; -3; -4; -7}, vì x là số tự nhiên nên x ϵ {0; 1; 2; 5}

6 ⋮ (x + 2)

(x + 2) ϵ Ư(6) hay (x + 2) ϵ {1; 2; 3; 6; -1; -2; -3; -6}

x ϵ {-1; 0; 1; 4; -3; -4; -5; -8}, vì x là số tự nhiên nên x ϵ {0; 1; 4}

6 ⋮ (x - 1)

(x - 1) ϵ Ư(6) hay (x - 1) ϵ {1; 2; 3; 6; -1; -2; -3; -6}

x ϵ {2; 3; 4; 5; 0; -1; -2; -5}, vì x là số tự nhiên nên x ϵ {2; 3; 4; 5; 0}

6 ⋮ (x - 2)

(x - 2) ϵ Ư(6) hay (x - 2) ϵ {1; 2; 3; 6; -1; -2; -3; -6}

x ϵ {3; 4; 5; 6; 1; 0; -1; -4}, vì x là số tự nhiên nên x ϵ {3; 4; 5; 6; 1; 0}

6 ⋮ (2 - x)

(2 - x) ϵ Ư(6) hay (2 - x) ϵ {1; 2; 3; 6; -1; -2; -3; -6}

x ϵ {1; 0; -1; -4; 3; 4; 5; 8}, vì x là số tự nhiên nên x ϵ {1; 0; 3; 4; 5; 8}

30 tháng 12 2016

lớp 6 ko làm được đâu

30 tháng 12 2016

em không biết

25 tháng 3 2018

8 tháng 5 2017

a, Gọi số phải tìm là a, aN*

Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.

Suy ra (a+4) ∈ BC(6,7,9)

Mà a là số tự nhiên nhỏ nhất

Suy ra (a+4) = BC(6,7,9) =  3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122

Vậy số phải tìm là 126

b, Gọi số phải tìm là a, aN*

a chia  cho 17, 25 được các số dư theo thứ tự là 8 và 16.

nên (a+7) chia hết cho 8; 16.

Suy ra (a+7)BC(8;16)

Suy ra BCNN(8;16) = 16 => a+7B(16) = 16k (kN).

Vậy số phải tìm có dạng 16k – 7

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết a+b = 128...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7

=> 4 (a - 3) chia hết cho 7  => 4a - 12 chia hết cho 7

=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)

a chia cho 13 dư 11 => a - 11 chia hết cho 13

=> 4 (a - 11) chia hết cho 13  => 4a - 44 chia hết cho 13

=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)

a chia cho 17 dư 14 => a - 14 chia hết cho 17

=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17

=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)

Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)

Mà a nhỏ nhất => 4a - 5 nhỏ nhất

=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547

=> 4a = 1552  => a= 388

2. Gọi ƯCLN(a,b) = d

=> a = d . m          (ƯCLN(m,n) = 1)

     b = d . n  

Do a < b => m<n

Vì BCNN(a,b) . ƯCLN(a,b) = a . b

\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)

Vì BCNN(a,b) + ƯCLN(a,b) = 19

=> m . n . d  + d = 19

=> d . (m . n + 1) = 19

=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)

Ta có bảng sau:

d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9

Vậy (a,b) = (2;9) ; (1 ; 18)

3.