2) tìm số tự nhiên a sao cho :
a) 42 ⋮ a và 6 < a ≤ 7
b) 35 ⋮ a và a ≤ 5
3) tìm 2 số a ;b biết rằng tích của chúng bằng 45 và a < b
4) tìm n sao cho :
a) n + 3 là ước của 17
b) n + 7 ⋮ n + 5
c) 3x +9 ⋮ 2x +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, a ϵ Ư(20) nên a ϵ {1; 2; 4; 5; 10; 20; -1; -2; -4; -5; -10; -20}.
Mà a > 4 nên a ϵ {5; 10; 20}
b, b ϵ B(5) nên b ϵ {...; -10; -5; 0; 5; 10; 15; 20; 25; 30; 35; ...}
Mà b ≤ 35 nên b ϵ {...; -10; -5; 0; 5; 10; 15; 20; 25; 30; 35}
Bài 2:
a,
30 + 45 = 75, tổng chia hết cho 15.
40 + 5 + 300 = 45 + 300. Vì mỗi số hạng chia hết cho 15 nên tổng chia hết cho 15.
b,
Vì số bị trừ chia hết cho 15 mà số trừ không chia hết cho 15 nên các hiệu 1500 - 23; 450 - 31 không chia hết cho 15.
145 + 5 - 17 = 150 - 17, số bị trừ chia hết cho 15 nhưng số trừ không chia hết cho 15 nên 145 + 5 - 17 không chia hết cho 15.
Bài 3:
a, Để A chia hết cho 6 thì x chia hết cho 6 (do các số hạng chia hết cho 6).
b, Từ câu a, suy ra để A không chia hết cho 6 thì x không chia hết cho 6.
Bài 4:
a, Tích 40.7.25 chia hết cho 8 vì 40 chia hết cho 8.
b, Tích 32.19.28 chia hết cho 8 vì 32 chia hết cho 8.
c, 4.35.2.39 = 8.35.39, tích này chia hết cho 8 vì 8 chia hết cho 8.
d, 14.27.4.15 = 56.27.15, tích này chia hết cho 8 vì 56 chia hết cho 8.
Bài 5: Tích A = 2.4.6...10.12 = (2.4.10).6.8.12 = 80.6.8.12, suy ra tích A chia hết cho 80 vì 80 chia hết cho 80.
Bài 6:
a, Tổng 2.4.6.8.10 + 310 chia hết cho 10 vì các số hạng chia hết cho 10.
b,1.2.3.4.5 + 230 = 10.3.4 + 230, tổng chia hết cho 10 vì các số hạng chia hết cho 10.
c, Xét 3.5.7.9 + 25, tổng này chia hết cho 5 vì mỗi số hạng chia hết cho 5, và tổng cũng chia hết cho 2 vì tổng này bằng tổng của 2 số lẻ. Do đó 3.5.7.9 + 25 chia hết cho 10.
Lại có 50 chia hết cho 10 nên 3.5.7.9 + 25 + 50 chia hết cho 10.
Bài 7: bỏ qua
Bài 8: Cho A= 4 + 4^2 + 4^3 + 4^4 + ...+ 4^12.Chứng minh rằng:
a, A chia hết cho 4 vì mỗi số hạng chia hết cho 4.
b,
\(A=4+4^2+...+4^{12}=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{11}+4^{12}\right)\)
\(A=4\left(1+4\right)+4^2\left(1+4\right)+...+4^{11}\left(1+4\right)=\left(4+4^2+...+4^{11}\right)5\)
Do đó A chia hết cho 5.
c,
\(A=4+4^2+...+4^{12}=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{10}+4^{11}+4^{12}\right)\)
\(A=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{10}\left(1+4+4^2\right)=\left(4+4^4+...+4^{10}\right)21\)
Do đó A chia hết cho 21.
Bài 9:
2 ⋮ x
x ϵ Ư(2) hay x ϵ {1; 2; -1; -2}, vì x là số tự nhiên nên x ϵ {1; 2}
2 ⋮ (x + 1)
(x + 1) ϵ Ư(2) hay (x + 1) ϵ {1; 2; -1; -2}
x ϵ {0; 1; -2; -3}, vì x là số tự nhiên nên x ϵ {0; 1}
2 ⋮ (x + 2)
(x + 2) ϵ Ư(2) hay (x + 2) ϵ {1; 2; -1; -2}
x ϵ {-1; 0; -3; -4}, vì x là số tự nhiên nên x ϵ {0}
2 ⋮ (x - 1)
(x - 1) ϵ Ư(2) hay (x - 1) ϵ {1; 2; -1; -2}
x ϵ {2; 3; 0; -1}, vì x là số tự nhiên nên x ϵ {2; 3; 0}
2 ⋮ (x - 2)
(x - 2) ϵ Ư(2) hay (x - 2) ϵ {1; 2; -1; -2}
x ϵ {3; 4; 1; 0}, vì x là số tự nhiên nên x ϵ {3; 4; 1; 0}
2 ⋮ (2 - x)
(2 - x) ϵ Ư(2) hay (2 - x) ϵ {1; 2; -1; -2}
x ϵ {1; 0; 3; 4}, vì x là số tự nhiên nên x ϵ {1; 0; 3; 4}
6 ⋮ x
x ϵ Ư(6) hay x ϵ {1; 2; 3; 6; -1; -2; -3; -6}, vì x là số tự nhiên nên x ϵ {1; 2; 3; 6}
6 ⋮ (x + 1)
(x + 1) ϵ Ư(6) hay (x + 1) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {0; 1; 2; 5; -2; -3; -4; -7}, vì x là số tự nhiên nên x ϵ {0; 1; 2; 5}
6 ⋮ (x + 2)
(x + 2) ϵ Ư(6) hay (x + 2) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {-1; 0; 1; 4; -3; -4; -5; -8}, vì x là số tự nhiên nên x ϵ {0; 1; 4}
6 ⋮ (x - 1)
(x - 1) ϵ Ư(6) hay (x - 1) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {2; 3; 4; 5; 0; -1; -2; -5}, vì x là số tự nhiên nên x ϵ {2; 3; 4; 5; 0}
6 ⋮ (x - 2)
(x - 2) ϵ Ư(6) hay (x - 2) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {3; 4; 5; 6; 1; 0; -1; -4}, vì x là số tự nhiên nên x ϵ {3; 4; 5; 6; 1; 0}
6 ⋮ (2 - x)
(2 - x) ϵ Ư(6) hay (2 - x) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {1; 0; -1; -4; 3; 4; 5; 8}, vì x là số tự nhiên nên x ϵ {1; 0; 3; 4; 5; 8}
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
Vậy (a,b) = (2;9) ; (1 ; 18)
3.