K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2019

Do \(-1\le sinx\le1\)

\(\Rightarrow\) Để pt đã cho có nghiệm thì:

\(-1\le m+1\le1\)

\(\Rightarrow-2\le m\le0\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$

Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:

$x=0$

$x=\frac{1}{2}\pi$

$x=\pi$

 

NV
17 tháng 10 2019

Do \(-1\le sinx\le1\) nên pt có nghiệm khi:

\(-1\le m+1\le1\)

\(\Rightarrow-2\le m\le0\)

NV
20 tháng 10 2019

\(\Leftrightarrow1-cos^2x+2cosx-2+m=0\)

\(\Leftrightarrow cos^2x-2cosx+1=m\)

\(\Leftrightarrow\left(cosx-1\right)^2=m\)

Do \(-1\le cosx\le1\Rightarrow0\le\left(cosx-1\right)^2\le4\)

\(\Rightarrow0\le m\le4\)

NV
14 tháng 1 2021

\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)

\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)

Đặt \(m+n=t\Rightarrow0\le t\le2\)

\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)

24 tháng 11 2021

Thầy ơi sao bên này là (2-mn) qua bên kia lại là \(\left[8-\left(m+n\right)^2\right]\) , dưới mẫu là (m+1)(n+1) qua bên này là \(\text{(m+n+2)}^2\)

 

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

23 tháng 12 2019

để phương trình có nghiệm thì :

12 + (-1)2 ≥ m2

⇔ m2 - 2 ≤ 0

⇔ -\(\sqrt{2}\) ≤ m ≤ \(\sqrt{2}\)

vậy \(-\sqrt{2}\)≤ m ≤ \(\sqrt{2}\) thì phương trình có nghiệm

24 tháng 12 2019

đáp án nào v bạn

a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-2\cdot2m\cdot4+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)

29 tháng 10 2023

a: Khi m=1 thì phương trình sẽ là:

\(x^2-2x+1-1=0\)

=>x^2-2x=0

=>x(x-2)=0

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có 2 nghiệm thì -4m+8>=0

=>-4m>=-8

=>m<=2

\(x_1^3+x_2^3< =15\)

=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)< =15\)

=>\(2^3-3\cdot2\cdot\left(m-1\right)< =15\)

=>\(8-6m+6< =15\)

=>-6m+14<=15

=>-6m<=1

=>\(m>=-\dfrac{1}{6}\)

=>\(-\dfrac{1}{6}< =m< =2\)

NV
9 tháng 11 2021

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi:

\(0^2+m^2\ge1^2\)

\(\Rightarrow\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)