K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 10 2019

\(y=2\left(\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x\right)+1=2sin\left(2x+\frac{\pi}{3}\right)+1\)

Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\)

\(\Rightarrow-1\le y\le3\)

NV
16 tháng 7 2021

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

NV
30 tháng 4 2021

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+3\)

Do \(sin\left(2x+\dfrac{\pi}{4}\right)\le1\Rightarrow y\le3+\sqrt{2}\)

\(\Rightarrow a=3;b=1\Rightarrow a+b=\)

NV
20 tháng 9 2021

\(y=2\left(\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x\right)=2sin\left(2x+\dfrac{\pi}{3}\right)\)

\(-1\le sin\left(2x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)

\(y_{min}=-2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=-1\Rightarrow x=-\dfrac{5\pi}{12}+k\pi\)

\(y_{max}=2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=1\Rightarrow x=\dfrac{\pi}{12}+k\pi\)

17 tháng 9 2021

a, \(y=2sin^2x-cos2x=1-2cos2x\)

Vì \(cos2x\in\left[-1;1\right]\Rightarrow y=2sin^2x-cos2x\in\left[-1;3\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=-1\\y_{max}=3\end{matrix}\right.\)

NV
24 tháng 10 2020

Hàm này không tồn tại cả min lẫn max luôn (-1 và 1 không phải là 2 kết quả đúng)

Bạn có thể tính toán 2 giá trị hàm tại: \(x=-\frac{\pi}{12}+0.0001\)\(x=-\frac{\pi}{12}-0.0001\) để kiểm chứng

4 tháng 7 2017

a) Ta có:

\(y=2\left(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)=2sin\left(\dfrac{\pi}{6}-x\right)\)

\(\Rightarrow-2\le y\le2\) (Do \(-1\le sin\alpha\le1\))

Vậy min y = -2 , max y = 2

11 tháng 5 2022

a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)

b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)  

c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)

d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)

\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\)  ( k thuộc Z ) 

4 tháng 8 2021

21.
a) `2sin(x-30^@)-1=0`
`<=>sin(x-30^@)=1/2`
`<=> sin(x-30^@)=sin30^@`
`<=>[(x-30^@=30^@+k360^@),(x-30^@=180^@-30^@+k360^@):}`
`<=> [(x=60^@+k360^@),(x=180^@+k360^@):}`
b) `5sin^2x+3cosx+3=0`
`<=>5(1-cos^2x)+3cosx+3=0`
`<=>-5cos^2x+3cosx+8=0`
`<=>(cosx+1)(cosx=8/5)=0`
`<=>[(cosx=-1),(cosx=8/5\ (VN)):}`
`<=>x=180^@+k360^@`
22.
`-1<=sin2x<=1`
`<=>2<=3+sin2x<=4`
`=> y_(min)=2 ; y_(max)=4`