Tìm tất cả giá trị của tham số m để phương trình : \(sin^2x+2cosx-2+m=0\) có nghiệm
A. \(-1\le m\le0\)
B. \(0\le m\le4\)
C. \(m>4\)
D. \(-4\le m\le0\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(-1\le sinx\le1\)
\(\Rightarrow\) Để pt đã cho có nghiệm thì:
\(-1\le m+1\le1\)
\(\Rightarrow-2\le m\le0\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
Do \(-1\le sinx\le1\) nên pt có nghiệm khi:
\(-1\le m+1\le1\)
\(\Rightarrow-2\le m\le0\)
Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$
Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:
$x=0$
$x=\frac{1}{2}\pi$
$x=\pi$
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(m^2+1\ge\left(m+1\right)^2\)
\(\Leftrightarrow m^2+1\ge m^2+2m+1\)
\(\Leftrightarrow m\le0\)
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
Đáp án của toi:https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.920223129881
Đáp án của một bạn khác: https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.616555176629
ĐK: \(-2\le x\le4\)
Đặt \(\sqrt{2+x}+\sqrt{4-x}=t\left(\sqrt{6}\le t\le2\sqrt{3}\right)\)
\(\Rightarrow\sqrt{8+2x-x^2}=\dfrac{t^2-6}{2}\)
Bất phương trình tương đương:
\(t+\dfrac{t^2-6}{2}\le m\)
\(\Leftrightarrow f\left(t\right)=t^2+2t-6\le2m\)
Bất phương trình đã cho có nghiệm khi \(2m\ge minf\left(t\right)=f\left(\sqrt{6}\right)=2\sqrt{6}\)
\(\Leftrightarrow m\ge\sqrt{6}\)
Kết luận: \(m\ge\sqrt{6}\)
\(\Leftrightarrow1-cos^2x+2cosx-2+m=0\)
\(\Leftrightarrow cos^2x-2cosx+1=m\)
\(\Leftrightarrow\left(cosx-1\right)^2=m\)
Do \(-1\le cosx\le1\Rightarrow0\le\left(cosx-1\right)^2\le4\)
\(\Rightarrow0\le m\le4\)