|2x+1|+|x|=x
Các bạn giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
x/2+x+x/3+x+x+x/4=23/4
⇒ 6x/12+12x/12+4x/12+12x/12+12x/12+3x/12=23/4
⇒ (6x+12x+4x+12x+12x+3x)/12=23/4
⇒ 49x/12=23/4
⇒ 49x=23/4.12
⇒ 49x=69
⇒ x=69/49
\(\left|x-5\right|+\left|x-11\right|=3x\) (1)
+, \(x< 5\) thì \(\left(1\right)\) trở thành:
\(-\left(x-5\right)+\left[-\left(x-11\right)\right]=3x\)
\(\Rightarrow-2x+16=3x\)
\(\Rightarrow-5x=-16\Leftrightarrow x=\dfrac{16}{5}\left(tm\right)\)
+, \(5\le x< 11\) thì (1) trở thành:
\(x-5-\left(x-11\right)=3x\)
\(\Rightarrow6=3x\Leftrightarrow x=2\left(ktm\right)\)
+, \(x\ge11\) thì (1) trở thành:
\(x-5+x-11=3x\)
\(\Rightarrow2x-16=3x\)
\(\Rightarrow-x=16\Leftrightarrow x=-16\left(ktm\right)\)
Vậy \(x=\dfrac{16}{5}\)
\(A=x^2-x=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
Vì (2x-1)^6=(2x-1)^8
(2x-1)^8-(2x-1)^6=0
(2x-1)^6[(2x-1)^2-1)]=0
th1 (2x-1)^6 suy ra 2x-1=0 suy ra x=1/2
th2 (2x-1)^2-1=0
(2x-1)^2=1
suy ra 2x-1 bằng 1;-1
th1 2x-1=1 suy ra x=1
2x-1=-1 suy ra x=0
a,Ta có D= (1/3+2x+1/3-2x):1/3+2x
=2/3:1/3+2x
=2+2x
=2(x+1)
b, Từ câu a ta có
D=2(x+1)
Với x=3
=>2(x+1)
=2.4=8
KL
a,Ta có D= (1/3+2x+1/3-2x):1/3+2x
=2/3:1/3+2x
=2+2x
=2(x+1)
b, Từ câu a ta có
D=2(x+1)
Với x=3
=>2(x+1)
=2.4=8
\(a) Đk:x<\dfrac{1}{2}\)
\(\sqrt{-2x+1}>7\)
\(\Leftrightarrow\)\(-2x+1>49\)
\(\Leftrightarrow\)\(x<-24\)
\(b)\)\(Đk:x>-9\)
\(\sqrt{x+9}\)\(\le\)\(31\)
\(\Leftrightarrow\)\(x+9\)\(\le\)\(961\)
\(\Leftrightarrow\)\(x\)\(\le\)\(952\)
\(c)\)Ta có:
\(-3\sqrt{3}=-\sqrt{27} \)
\(-2\sqrt{7}=-\sqrt{28}\)
\(-\sqrt{27}>-\sqrt{28}\)
\(\Rightarrow\)\(-3\sqrt{3}>-2\sqrt{7}\)
Ta có: \(\hept{\begin{cases}\left|2x+1\right|\ge0\\\left|x\right|\ge0\end{cases}}\Rightarrow\left|2x+1\right|+\left|x\right|\ge0\)
\(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|2x+1\right|=2x+1\\\left|x\right|=x\end{cases}}\)
\(pt\Leftrightarrow3x+1=x\Leftrightarrow-2x=1\Leftrightarrow x=\frac{-1}{2}\left(L\right)\)
Vậy pt vô nghiệm
Ta có : \(\hept{\begin{cases}\left|2x+1\right|\ge0\\\left|x\right|\ge0\end{cases}}\Rightarrow\left|2x+1\right|+\left|x\right|\ge0\Rightarrow x\ge0\)
\(\left|2x+1\right|+\left|x\right|=x\)
\(\Leftrightarrow2x+1+x-x=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\left(L\right)\)
Vậy không có giá trị nào của x thỏa mãn yêu cầu bài toán .