a)5n+1+7.5n+5.7n+2+7n+3 chia hết cho 2
b)3n+1+4b+1+3.4b+4.3a chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n-5\right)⋮\left(n-2\right)\)
=> \(\left(n-5\right)-\left(n-2\right)⋮\left(n-2\right)\)
=> \(\left(n-5-n+2\right)⋮\left(n-2\right)\)
=> \(-3⋮\left(n-2\right)\)
=> n-2\(\inƯ\left(-3\right)\) ={\(\pm1,\pm3\) }
ta có bảng sau
n-2 | -1 | 1 | -3 |
3 |
n | 1 | 3 | -1 | 5 |
tm | tm | loại | tm |
vậy n\(\in\left\{1;3;5\right\}\)
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
\(\left(n+9\right)⋮\left(n+4\right)\)
=> \(\left(n+9\right)-\left(n+4\right)⋮\left(n+4\right)\)
=> \(\left(n+9-n-4\right)⋮\left(n+4\right)\)
=> \(5⋮\left(n+4\right)\)
=> \(n+4\inƯ\left(5\right)=\left\{1;5\right\}\)
tó có bảng sau
n+4 | 1 | 5 |
n | -3 loại |
1 |
vậy x\(\in\left\{1\right\}\)
\(a,5n-1⋮3n-7\)
\(15n-3⋮3n-7\)
\(5\left(3n-7\right)+32⋮3n-7\)
\(\Rightarrow32⋮3n-7\)
\(\Rightarrow3n-7\)là ước của \(32\)
\(\Rightarrow3n-7\in\left\{-32;-16;-8;-4;-2;-1;1;2;4;8;16;32\right\}\)
\(\Rightarrow3n\in\left\{-25;-9;-1;3;5;6;8;9;11;15;23;39\right\}\)
\(\Rightarrow n\in\left\{-3;1;2;3;5;13\right\}\left(n\in Z\right)\)
\(b,7n+3⋮2n+5\)
\(14n+6⋮2n+5\)
\(7\left(2n+5\right)-29⋮2n+5\)
\(\Rightarrow29⋮2n+5\)
\(\Rightarrow2n+5\in\left\{-29;-1;1;29\right\}\)
\(\Rightarrow2n\in\left\{-34;-6;-4;24\right\}\)
\(\Rightarrow n\in\left\{-17;-3;-2;12\right\}\)
\(a) 5^{n+1}+7.5^n+5.7^{n+2}+7^{n+3}\\ =5^n . 5+7.5^n+5.7^{n+2}+7^{n+2}.7\\ =5^n( 5+7)+7^{n+2}(5+7)\\ =5^n.12+7^{n+2}.12\\ =12.(5^n+7^{n+2})\)
Vì 12 ⋮ 2
=> 12.5n + 7n+2 ⋮ 2
Vậy \( 5^{n+1}+7.5^n+5.7^{n+2}+7^{n+3}\\\)⋮ 2
\(b) 3^{n+1}+4^{b+1}+3.4^b+4.3^n\\ =3^n.3+4^b.4+3.4^b+4.3^n\\ =(4^b.4+3.4^b)+(3^n.3+4.3^n)\\ =4^b(4+3)+3^n(3+4)\\ =4^n.7+3^n.7\\ =7.(4^n+3^n)\)
Vì 7 ⋮ 7
=>7.(4n + 3n) ⋮ 7
Vậy \(3^{n+1}+4^{b+1}+3.4^b+4.3^n\\\)⋮ 7