K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

a, \(\overrightarrow{AB}=\left(3;1\right)\)

Phương trình đường thẳng AB:

\(\dfrac{x+3}{3}=\dfrac{y-7}{1}\Leftrightarrow x-3y+24=0\)

b, \(d\left(C,AB\right)=\dfrac{\left|-1-3.\left(-4\right)+24\right|}{\sqrt{1^2+3^2}}=\dfrac{7\sqrt{10}}{2}\)

c, \(AB=\sqrt{10};BC=\sqrt{145};CA=\sqrt{137}\)

Theo định lí hàm số cosin: \(cosC=\dfrac{BC^2+AC^2-AB^2}{2.BC.AC}=...\)

2 tháng 4 2021

undefined

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

29 tháng 4 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác ABE đều ⇒ AB = BE = EA = 6 (cm)     (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra: