K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

\(7^{1999}-43=7^3.7^{1996}-43=343.\left(7^4\right)^{499}-43=343.2401^{499}-43=343.(\overline{....01})-43=\left(\overline{....43}\right)-43=\overline{....00}\)=> 71999 - 43 có chữ số tận cùng là 00 

Vậy 71999 - 43 chia hết cho 100

25 tháng 5 2017

A=(7+73)+(75+77)+....+(71997+71999)

A=7.(1+72)+75.(1+72)+....+71997.(1+72)

A=7.50+75.50+79.50+.....+71997.50

=>A chia hết cho 5 (1)

A=(7+73+75+....+71999)=7.(70+72+74+....+71998)

=>A chia hết cho 7 (2)

Mà ƯCLN(5;7)=1=>A chia hết cho 35

22 tháng 11 2017

Ban kia lam dung roi

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

Hiển nhiên $A\vdots 7$ do các số hạng đều chia hết cho 7.

Lại có:

$A=(7+7^3)+(7^5+7^7)+....+(7^{1997}+7^{1999})$

$=7(1+7^2)+7^5(1+7^2)+...+7^{1997}(1+7^2)$
$=(1+7^2)(7+7^5+...+7^{1997})$
$=50(7+7^5+...+7^{1997})\vdots 5$

Vậy $A\vdots 7, A\vdots 5$. Mà $(7,5)=1$

$\Rightarrow A\vdots 35$

15 tháng 4 2018

7^98(7^2-7+1)=43.7^98

nên biểu thức chia hết cho 43

15 tháng 4 2018

Cảm ơn bạn nhiều nha

20 tháng 1 2017

Đề kiểu gì v ta? Tính 3443 - 100 ra 3343 không chia hết cho 132 

20 tháng 1 2017

S = 3443 - 100 

S = 3343 : 132=25 ( dư 43)

vậy không chứng minh được S chia hết cho 132.