K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 , n + 4 ( \(n\inℕ\)

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\) 

Giả sử A là một số chính phương .

Vì A là đa thức bậc 4 với hệ số bậc cao nhất là 1 nên ta có : 

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+an+b\right)^2\)

\(\Rightarrow n^4+6n^3+11n^2+6n+1=n^4+2an^3+\left(a^2+2b\right)n^2+2abn+b^2\)

Đồng nhất 2 vế ta được :

\(\hept{\begin{cases}2a=6;a^2+2b=11\\2ab=6;b^2=1\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+3n+1\right)^2\forall n\). Ta có điều phải chứng minh.

17 tháng 10 2019

QTV sai r nhé :))

Gọi 4 stn lt là \(a,a+1,a+2,a+3\left(a\inℕ\right)\)

Xét \(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)

\(=a\left(a+3\right)\left(a+1\right)\left(a+2\right)+1\)

\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

\(=\left(a^2+3a+1\right)^2-1+1=\left(a^2+3a+1\right)^2\)(ĐPCM)