Chứng minh rằng:10^100+10^51+25 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
a=102012+102011+102010+102009+8
a=100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
Tổng các chữ số của a là (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8=12 chia hết cho 3
suy ra a chia hết cho 3 (1)
Vì 102012 chia hết cho 8, 102011 chia hết cho 8, 102010 chia hết cho 8, 102009 chia hết cho 8, 8 chia hết cho 8
nên a chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên a chia hết cho 24
b, a=102012+102011+102010+102009+8
a=(...0)+(...0)+(...0)+(...0)+8
a=(...8), không là số chính phương.
a=102012+102011+102010+102009+8
a=100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
Tổng các chữ số của a là (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8=12 chia hết cho 3
suy ra a chia hết cho 3 (1)
Vì 102012 chia hết cho 8, 102011 chia hết cho 8, 102010 chia hết cho 8, 102009 chia hết cho 8, 8 chia hết cho 8
nên a chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên a chia hết cho 24
b, a=102012+102011+102010+102009+8
a=(...0)+(...0)+(...0)+(...0)+8
a=(...8), không là số chính phương.
a/ Xét chữ số tận cùng của A là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 12 nên chia hết cho 3 (2)
Lại có (8,3) = 1 (3)
Từ (1)(2)(3) suy ra A chia hết cho 24
Lời giải:
Xét:
$M=1+10+....+10^n$
$10M=10+10^2+....+10^{n+1}$
$10M-M=10^{n+1}-1$
$M=\frac{10^{n+1}-1}{9}$
$A=M.(10^{n+1}+5)+1=\frac{(10^{n+1}-1)(10^{n+1}+5)}{9}+1$
$=\frac{10^{2n+2}+4.10^{n+1}-5+9}{9}$
$=\frac{10^{2n+2}+4.10^{n+1}+4}{9}$
$=\frac{(10^{n+1}+2)^2}{9}$
$=\left(\frac{10^{n+1}+2}{3}\right)^2$
Ta thấy: $10^{n+1}+2\equiv 1^{n+1}+2=3\equiv 0\pmod 3$
Do đó: $\frac{10^{n+1}+2}{3}\in\mathbb{N}$
Suy ra $A$ là scp.
\(10^{100}+10^{51}+25=\left(10^{50}\right)^2+10\cdot10^{50}+25\)
\(=\left(10^{50}\right)^2+2\cdot10^{50}+5+5^2=\left(10^{50}+5\right)^2\)là SCP (Đpcm)