Tìm các số a, b,c. Biết rằng a/2=b/3=c/4 và a^2-b^2+2c^2=108 Giúp mình với !!!!!😭😭😭😭
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
a)
5.(12-x)-20=30
⇒60-5x-20=30
⇒-5x=30+20-60
⇒-5x=-10
⇒x=2
b)(17x - 25 ) : 8 + 65 = 92
(17x - 25 ) : 8 + 65 = 81
17x - 25 = 16 x 8 = 128
17x = 128+25=153
x= 153:17 =9
c)
x=23
Giải thích các bước giải:
3x – 10 = 2x + 13
3x-2x=13+10
x=23
d)4(2x+7)-3(3x-2)=24
4.2x+4.7-3.3x+3.2=24
8x+28-9x+6=24
8x-9x=24-28-6=-10
=>(-1)x=-10
x=-10:(-1)
x=10
a. \(5\cdot\left(12-x\right)-20=30\Leftrightarrow5\left(12-x\right)=50\)
\(\Leftrightarrow12-x=50:5=10\)
\(\Leftrightarrow x=12-10=2\)
b. \(\left(17x-25\right):8+65=9^2\)
\(\Leftrightarrow\left(17x-25\right):8=81-65=16\)
\(\Leftrightarrow17x-25=16:8=2\)
\(\Leftrightarrow17x=2+25=27\Leftrightarrow x=\frac{27}{17}\)
c. \(3x-10=2x+13\)
\(\Leftrightarrow3x-2x=10+13\)
\(\Leftrightarrow x=23\)
d. \(4\cdot\left(2x+7\right)-3\cdot\left(3x-2\right)=24\)
\(\Leftrightarrow8x+28-9x+6=24\)
\(\Leftrightarrow34-x=24\Leftrightarrow x=10\)
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
a) \(74.42+74.58-400=74.\left(42+58\right)-400\)
\(=74.100-400\)
\(=7400-400\)
\(=7000\)
b) \(75-\left(3.5^2-4.2^3\right)=75-\left(3.25-4.8\right)\)
\(=75-\left(75-32\right)\)
\(=75-75+32\)
\(=32\)
c) \(x-15=-135\)
\(x=-135+15\)
\(x=-120\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}.\)
=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\)
=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\) và \(a^2-b^2+2c^2=108.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a^2}{4}=4\Rightarrow a^2=16\Rightarrow\left[{}\begin{matrix}a=4\\a=-4\end{matrix}\right.\\\frac{b^2}{9}=4\Rightarrow b^2=36\Rightarrow\left[{}\begin{matrix}b=6\\b=-6\end{matrix}\right.\\\frac{c^2}{16}=4\Rightarrow c^2=64\Rightarrow\left[{}\begin{matrix}c=8\\c=-8\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(4;6;8\right),\left(-4;-6;-8\right).\)
Chúc bạn học tốt!