cho hình thang ABCD (AB//CD) Vẽ BH vuông góc CD (H thuộc CD)
biết BH=12cm, DH=16cm , CH=9cm , AD=14cm
a) tính độ dài DB,BC
b) chứng minh tam giác DBC vuông
c) tính các góc của hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề; DH=16cm
DC=16+9=25cm
DB=căn DH^2+HB^2=20cm
BC=căn 12^2+9^2=15cm
b: Xét ΔDBC có
DC^2=DB^2+BC^2
nên ΔBDC vuông tại B
c: ΔBDC vuông tại B có sin C=BD/DC=4/5
nên \(\widehat{C}\simeq53^0\)
=>\(\widehat{B}\simeq180^0-53^0=127^0\)
Kẻ AK vuông góc DC
Xét tứ giác ABHK có
AB//HK
AK//HB
=>ABHK là hình bình hành
=>AK=BH=12cm
Xét ΔAKD vuông tại K có sin D=AK/AD=6/7
nên \(\widehat{D}\simeq59^0\)
=>góc A=180 độ-59 độ=121 độ
a: Sửa đề; DH=16cm
DC=16+9=25cm
DB=căn DH^2+HB^2=20cm
BC=căn 12^2+9^2=15cm
b: Xét ΔDBC có
DC^2=DB^2+BC^2 nên ΔBDC vuông tại B
c: ΔBDC vuông tại B có sin C=BD/DC=4/5 nên ˆ C ≃ 53*(*là độ C)
=> ˆ B ≃ 180* − 53* = 127*
Kẻ AK vuông góc DC
Xét tứ giác ABHK có: AB//HK AK//HB
=>ABHK là hình bình hành
=>AK=BH=12cm Xét ΔAKD vuông tại K có sin D=AK/AD=6/7 nên ˆ D ≃ 59*
=>góc A=180 độ-59 độ=121 độ
a: \(DB=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)
b: Xét ΔBDC có DC^2=BD^2+BC^2
nên ΔBDC vuông tại B