Số nghiệm của pt : \(cosx=\frac{1}{2}\) thuộc đoạn \(\left[-2\Pi;2\Pi\right]\) là ?
A. 1
B. 2
C. 3
D. 4
Trình bày bài giải chi tiết rồi mới chọn đáp án nha các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow m\left(sinx+cosx+1\right)=sin^2x+cos^2x+2sinx.cosx\)
\(\Leftrightarrow m\left(sinx+cosx+1\right)=\left(sinx+cosx\right)^2\)
Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\)
\(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x+\frac{\pi}{4}\in\left[\frac{\pi}{4};\frac{3\pi}{4}\right]\Rightarrow t\in\left[1;\sqrt{2}\right]\)
Phương trình trở thành: \(t^2=m\left(t+1\right)\Leftrightarrow\frac{t^2}{t+1}=m\) (1)
\(f\left(t\right)=\frac{t^2}{t+1}\) đồng biến trên \(\left[1;\sqrt{2}\right]\Rightarrow f\left(1\right)\le f\left(t\right)\le f\left(\sqrt{2}\right)\)
\(\Leftrightarrow\frac{1}{2}\le f\left(t\right)\le2\sqrt{2}-2\)
\(\Rightarrow\frac{1}{2}\le m\le2\sqrt{2}-2\)
7.
Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)
Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)
Pt trở thành:
\(\frac{t^2-1}{2}+t=1\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)
6.
\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)
Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
a) Vẽ đồ thị:
\(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\) có 5 nghiệm
b) Vẽ đồ thị:
\(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 6 nghiệm
\(2\left(1-sin^2x\right)+3sinx+3=0\)
\(\Leftrightarrow-2sin^2x+3sinx+5=0\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{5}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\)
\(0\le-\frac{\pi}{2}+k2\pi\le200\pi\Rightarrow1\le k\le100\) (có 100 nghiệm)
Tổng các nghiệm:
\(\sum x=-\frac{\pi}{2}.100+\sum\limits^{100}_{k=1}2k\pi=10050\pi\)
2.
\(\Leftrightarrow2cos^2x-1+3\left|cosx\right|-1=0\)
\(\Leftrightarrow2\left|cosx\right|^2+3\left|cosx\right|-2=0\Rightarrow\left[{}\begin{matrix}\left|cosx\right|=\frac{1}{2}\\\left|cosx\right|=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
Pt có 2 nghiệm trên đoạn đã cho \(x=\pm\frac{\pi}{3}\)
\(sinx-\sqrt{3}cosx=1\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{-\dfrac{5\pi}{6};\dfrac{\pi}{2}\right\}\)
\(\Leftrightarrow2cos^2x+3\left|cosx\right|-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|cosx\right|=\frac{1}{2}\\\left|cosx\right|=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{\pi}{3}\)
Pt có 2 nghiệm trên đoạn đã cho
=>2cos2x=pi(loại) hoặc sin x-cosx=0
=>sin x-cosx=0
=>sin(x-pi/4)=0
=>x-pi/4=kpi
=>x=kpi+pi/4
mà x\(\in\left[-pi;pi\right]\)
nên \(x\in\left\{\dfrac{pi}{4};-\dfrac{3}{4}pi\right\}\)
=> D
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\frac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=arcsin\left(\frac{4}{5}\right)+m2\pi\\x=\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\end{matrix}\right.\)
Do \(-2\pi\le x\le3\pi\)
\(\Rightarrow\left\{{}\begin{matrix}-2\pi\le\frac{\pi}{2}+k\pi\le3\pi\\-2\pi\le arcsin\left(\frac{4}{5}\right)+m2\pi\le3\pi\\-2\pi\le\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\le3\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{5}{2}\le k\le\frac{5}{2}̸\\-1,15< m< 1,35\\-1,35< n< 1,14\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\left\{-2;-1;0;1;2\right\}\\m=\left\{-1;0;1\right\}\\n=\left\{-1;0;1\right\}\end{matrix}\right.\)
Có 11 nghiệm
Chọn D nha ko phải chọn A