K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

Hoành độ đỉnh: \(x_I=-\frac{b}{2a}=-\frac{-2}{2}=1\)

=> Tung độ đỉnh: \(y_I=1-2+1=0\)

=> I(1;0) => Chọn C

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Parabol \(y =  - {x^2} + 2x + 3\) có \(a =  - 1;\,\,b = 2;\,\,c = 3.\)

Ta có: \(\Delta  = {b^2} - 4ac = {2^2} - 4\left( { - 1} \right).3 = 4 + 12 = 16.\)

Tọa độ đỉnh \(I\) là: \(I\left( {1;4} \right).\)

Chọn D.

a) Thay x=1 và y=-2 vào (P), ta được:

\(a\cdot1^2-4\cdot1+c=-2\)

\(\Leftrightarrow a-4+c=-2\)

hay a+c=-2+4=2

Thay x=2 và y=3 vào (P), ta được:

\(a\cdot2^2-4\cdot2+c=3\)

\(\Leftrightarrow4a-8+c=3\)

hay 4a+c=11

Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)

Vậy: (P): \(y=3x^2-4x-1\)

NV
26 tháng 3 2022

A là giao điểm AB và AD nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;-3\right)\)

Do I thuộc \(y^2=x\) nên tọa độ có dạng: \(I\left(a^2;a\right)\)

I là tâm hình thoi \(\Rightarrow d\left(I;AB\right)=d\left(I;AD\right)\Rightarrow\dfrac{\left|2a^2-a-1\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|a^2-2a-5\right|}{\sqrt{2^2+\left(-1\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}2a^2-a-1=a^2-2a-5\\2a^2-a-1=-a^2+2a+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2+a+4=0\left(vn\right)\\3a^2-3a-6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-1\\a=2\end{matrix}\right.\)

TH1: \(a=-1\Rightarrow I\left(1;-1\right)\)

Do I là trung điểm AC nên tọa độ C: \(\left\{{}\begin{matrix}x_C=2x_I-x_A=3\\y_C=2y_I-y_A=1\end{matrix}\right.\) \(\Rightarrow C\left(3;1\right)\)

Đường thẳng BC song song AD và đi qua C nên có pt:

\(1\left(x-3\right)-2\left(y-1\right)=0\Leftrightarrow x-2y-1=0\)

B là giao điểm AB và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-1=0\end{matrix}\right.\) \(\Rightarrow B...\)

Tương tự, đường thẳng CD song song AB và đi qua C nên có pt:

\(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow...\Rightarrow D\)

Tương tự với trường hợp \(a=2\Rightarrow I\left(4;2\right)\)

NV
15 tháng 10 2019

Ta có pt:

\(\left\{{}\begin{matrix}\frac{1}{a}=1\\\frac{4ac-4}{4a}=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\c=-2\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-2\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:

\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)

Vậy parabol là \(y = 2{x^2} + 6x + 4\)

b) Hoành độ đỉnh của parabol là \(x_I = \frac{{ - b}}{{2a}}\)

Suy ra \(x_I = \frac{{ - b}}{{2a}} =  - 3 \Leftrightarrow b = 6a\)     (1)

Thay tọa độ điểm I vào ta được:

\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b =  - 9\\ \Leftrightarrow 3a - b =  - 3\left( 2 \right)\end{array}\)

Từ (1) và (2) ta được hệ

\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b =  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a =  - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)

Vậy parabol là \(y = {x^2} + 6x + 4\).

16 tháng 11 2023

loading...  loading...  loading...  

16 tháng 11 2023

loading...  loading...  loading...  loading...