tìm n nguyên để n^2+12 là SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
Đặt \(n^2+2006=a^2\)(a \(\in\)Z)
\(\iff\)\(a^2-n^2=2006\)
\(\iff\)\(\left(a-n\right).\left(a+n\right)=2006\left(1\right)\)
Nếu a,n khác tính chẵn ,lẻ thì VT(1) là số lẻ
\(\implies\)không thỏa mãn
Nếu a,n cùng tính chẵn ,lẻ thì (a-n) chia hết cho 2 ; (a+n) chia hết cho 2 nên VT(1) chia hết cho 4 ;VP(1) không chia hết cho 4
\(\implies\) không thỏa mãn
Vậy không tồn tại n để \(n^2+2006\) là số chính phương
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số c
Tìm STN n để M=n^4-n+2 là SCP
Tìm STN n để
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phương
ai h minh h lai M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8S
Tìm STN n để M=n^4-n+2 là SC
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươngP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươngTìm STN n để M=n^4-n+2 là SCP
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phương
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươngố chính phương
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươnghính phương
\(n^2+12\)là số chính phương nên \(n^2+12=a^2\)
\(\Leftrightarrow a^2-n^2=12\)
\(\Leftrightarrow\left(a+n\right)\left(a-n\right)=12\)
Đến đây lập bảng giá trị
đặt n^2+12=k^2
(k-n)(k+n)=12