K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

bạn vào nick ''nguyen thi thanh loan'' nhé

16 tháng 10 2019

Là sao vậy

\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)

\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)

\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)

\(=\dfrac{-\left(4+5+...+51\right)}{2}\)

\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)

\(B=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)

\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{51}{2}\)

\(=\dfrac{50\cdot\dfrac{\left(51+2\right)}{2}}{2}=50\cdot\dfrac{53}{4}=662.5\)

3 tháng 1 2016

Đặt \(S=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+.....+99}+\frac{1}{50}\)

Đặt E = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+....+99}\)

\(E=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)

\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

E = 49/100 : 1/2 = 49/50

Vậy \(S=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)

3 tháng 1 2016

cách tính như thế nào bạn?????

 

23 tháng 6 2019

\(P=1+\frac{1}{1+2}+\frac{1}{1+2+3}+........+\frac{1}{1+2+3+.......+50}=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+......+\frac{1}{\frac{50.51}{2}}=1+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{50.51}=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{50.51}\right)\) \(Taco:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\)

\(\Rightarrow P=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.......+\frac{1}{50}-\frac{1}{51}\right)=1+2\left(\frac{1}{2}-\frac{1}{51}\right)=1+1-\frac{2}{51}=2-\frac{2}{51}=\frac{100}{51}\)

23 tháng 6 2019

Bằng \(\frac{100}{51}\)

16 tháng 3 2021

sao bn ko tra trên mạng ấy