K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Ta có: (x^2+2x).(x^2+4x+3)-24

         =x.(x+2).(x^2+x+3x+3)-24

         =x.(x+2).[x.(x+1)+3.(x+1)]-24

         =x.(x+2).(x+1).(x+3)-24

         =[x.(x+3)].[(x+1).(x+2)]-24

         =(x^2+3x).(x^2+3x+2)-24

Đặt x^2+3x=t,phương trình trở thành: t.(t+2)-24=t^2+2t-24=t^2-4t+6t-24=t.(t-4)+6.(t-4)=(t-4).(t+6)=(x^2+3x-4).(x^2+3x+6)

17 tháng 10 2019

cám ơn bạn ^^

19 tháng 11 2024

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

16 tháng 5 2019

22 tháng 11 2019

Cách 1: x2 – 4x + 3

= x2 – x – 3x + 3

(Tách –4x = –x – 3x)

= x(x – 1) – 3(x – 1)

(Có x – 1 là nhân tử chung)

= (x – 1)(x – 3)

Cách 2: x2 – 4x + 3

= x2 – 2.x.2 + 22 + 3 – 22

(Thêm bớt 22 để có HĐT (2))

= (x – 2)2 – 1

(Xuất hiện HĐT (3))

= (x – 2 – 1)(x – 2 + 1)

= (x – 3)(x – 1)

15 tháng 11 2021

\(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+3\right)\left(x+1\right)\)

\(x^2\left(x-3\right)+4\left(3-x\right)\)\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

23 tháng 8 2023

\(x^2\left(x-3+12-4x\right)\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

Bạn thử xem lại đề câu d nhé.

undefinedundefined

Cảm ơn ạ.

 

 

4 tháng 12 2019

x2 + 2x – 3

= x2 + 2x + 1 – 4

= (x + 1)2 – 22

= (x + 1 + 2)(x + 1 – 2)

= (x + 3)(x – 1)

12 tháng 11 2017

Chọn D.

x 4  + 8x = x( x 3 +8)= x( x 3 + 2 3 ) = x(x + 2)(  x 2 − 2x + 4)

7 tháng 8 2023

a) \(x^4+8x+63\)

\(=x^4+4x^3+9x^2-4x^3-16x^2-36x+7x^2+28x+63\)

\(=x^2\left(x^2+4x+9\right)-4x\left(x^2+4x+9\right)+7\left(x^2+4x+9\right)\)

\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)

7 tháng 8 2023

c) \(\left(x^2+2x+7\right)+\left(x^2-2x+4\right)\left(x^2+2x+3\right)\left(1\right)\)

Ta có : \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Rightarrow x^2+2x+4=\dfrac{x^3-8}{x-2}\)

\(\left(1\right)\Rightarrow\left[\left(\dfrac{x^3-8}{x-2}+3\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-8}{x-2}-1\right)\right]\)

\(=\left[\left(\dfrac{x^3-3x-14}{x-2}\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-2x-5}{x-2}\right)\right]\)

\(=\dfrac{1}{x-2}\left[x^3-3x-14+\left(x^2-2x+4\right)\left(x^3-2x-5\right)\right]\)

18 tháng 10 2021

1.A

2.C

3.B

4.C

15 tháng 12 2021

a

c

b

c