1.Cho B = 50+51+52+.....+549.
Chứng minh rằng B không phải số chính phương?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Có thể làm như sau
Ta thấy \(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
.......
\(\dfrac{1}{100}< \dfrac{1}{50}\)
=> A = \(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)
Lại có
\(\dfrac{1}{51}>\dfrac{1}{100}\)
\(\dfrac{1}{52}>\dfrac{1}{100}\)
.......
\(\dfrac{1}{99}>\dfrac{1}{100}\)
=> A = \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)
=> \(\dfrac{1}{2}< A< 1\)
Vậy A không phải số tự nhiên
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
giả sử
tồn tại số tự nhiên a sao cho
\(1+5^m+8^m=a^2\)
với m=0 vế trái bằng 3 (vô lí)
với m khác 0 , rõ ràng vế trái là một số chẵn , do đó a phải là số chẵn .
do đó vế phải chia hết cho 4
suy ra \(1+5^m+8^m⋮4\Leftrightarrow1+5^m⋮4\)
điều này vô lý vì \(5^m\) chia 4 dư 1 với mọi m, do đó \(1+5^m\)không thể chia hết cho 4
do đó số ban đầu không thể là số chính phương
Bài giải
Ta có :
\(B=5^0+5^1+5^2+...+5^{49}\)
\(5B=5^1+5^2+5^3+...+5^{50}\)
\(5B-B=5^{50}-5^0\)
\(4B=5^{50}-1\)
\(4B=\left(5^{25}\right)^2-1\text{ ( không phải là số chính phương ) }\)
\(\Rightarrow\text{ }B=\frac{\left(5^{25}\right)^2-1}{4}\text{ không phải là số chính phương}\)