Hãy chứng minh rằng:\(|A+B|\)nhỏ hơn hoặc bằng \(|A|+|B|\).Dấu ''='' xảy ra khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)2 +3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0
câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)2 +3b2/2 .a=0 và b=0
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
|a| + |b| >= |a+b|
<=> (|a|+|b|)^2 >= |a+b|^2
<=> a^2+b^2 +2|ab| >= a^2+b^2+2ab
<=> |ab| >= ab (luôn đúng)
Dấu = xảy ra khi a,b cùng dấu
\(\left(a+b\right)\left(a^5+b^5\right)=a^6+b^6+a^4+b^4\ge2a^3b^3+2a^2b^2=4\)
dấu = khi a = b = 1
Theo giả thiết ta có \(ab=1\)
Sử dụng bđt Cô-si :
\(a+b\ge2\sqrt{ab}=2\)
\(a^5+b^5\ge2\sqrt{a^5b^5}=2\)
Nhân theo vế ta có ngay điều phải chứng minh
dấu "=" xảy ra khi A và B cùng dấu.
Dấu "=" khi \(AB\ge0\)
Còn ý một thì mk ko bt làm
Hok tốt