abcd x dcba =????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c,d là các chữ số
=> d<10
=> 0<a<3
mà 4 là số chẵn
=> dcba là số chẵn
=> a chẵn
=> a = 2
ta có 4. 2bcd = dcb2
=> d có thể nhận các giá trị 8 hoặc 9
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2
=> d = 8
ta có 4. 2bc8 = 8cb2
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2
<=> 60c - 390b = 30
<=> 2c - 13b = 1
<=> 13b + 1 = 2c
mà 2c < 20
=> 13b < 19
=> b < 2
2c là số chẵn => b lẻ
=> b = 1
=> c = 7
thử lại thấy thỏa mãn
vậy số cần tìm là 2178
Gọi số 4 chữ số cần tìm là abcd đi. Với a,b,c,d là các ẩn số cho các chữ số của số cần tìm. (a,b,c,d thuộc N)
Đề cho số cần tìm nhân với 9 cũng ra số 4 chữ số ngược lại ban đầu vậy suy ra có phương trình:
9[abcd] = [dcba]
=> 9(1000a + 100b + 10c + d) = 1000d + 100c + 10b + a (1)
Nhận xét: Số sau khi nhân 9 cũng là số có 4 chữ số vậy tối đa nó là 9999 thôi.
=> [dcba] =< 9999
=> 9[abcd] =< 9999
=> [abcd] =< 1111
Từ đây suy ra được a =< 1
Nhận xét: vì [abcd] là số 4 chữ số nên a không thể là 0, vậy a=1. Như vậy dò ra là số [1bcd]. Số này nhân 9 ra số 4 chữ số thì chắc chắn có dạng [9xxx]. Vậy => [dcba] = [9xxx] => d = 9.
Lúc này thế a=1,d=9 vào phương trình (1):
(1)=> c = 89 b + 8 (2)
Nhận xét: do c,b là số tự nhiên nên 0 =< c =< 9. Từ (2) thấy nếu b >= 1 thì c không thỏa điều kiện. Vậy => b = 0. Thế vào (2)=> c = 8
Kết luận số cần tìm là: 1089.
Gọi số 4 chữ số cần tìm là abcd đi. Với a,b,c,d là các ẩn số cho các chữ số của số cần tìm. (a,b,c,d thuộc N)
Đề cho số cần tìm nhân với 9 cũng ra số 4 chữ số ngược lại ban đầu vậy suy ra có phương trình:
9[abcd] = [dcba]
=> 9(1000a + 100b + 10c + d) = 1000d + 100c + 10b + a (1)
Nhận xét: Số sau khi nhân 9 cũng là số có 4 chữ số vậy tối đa nó là 9999 thôi.
=> [dcba] =< 9999
=> 9[abcd] =< 9999
=> [abcd] =< 1111
Từ đây suy ra được a =< 1
Nhận xét: vì [abcd] là số 4 chữ số nên a không thể là 0, vậy a=1. Như vậy dò ra là số [1bcd]. Số này nhân 9 ra số 4 chữ số thì chắc chắn có dạng [9xxx]. Vậy => [dcba] = [9xxx] => d = 9.
Lúc này thế a=1,d=9 vào phương trình (1):
(1)=> c = 89 b + 8 (2)
Nhận xét: do c,b là số tự nhiên nên 0 =< c =< 9. Từ (2) thấy nếu b >= 1 thì c không thỏa điều kiện. Vậy => b = 0. Thế vào (2)=> c = 8
Kết luận số cần tìm là: 1089.
Gọi số đó là abcd
Theo bài cho : abcd x 4 = dcba
=> dcba chia hết cho 4
Vì dcba là số có 4 chữ số nên dcba < 10 000 => abcd : 4 < 10 000 : 4 = 2 500 => a < hoặc = 2
Hơn nữa , a phải là chữ số chẵn khác 0 nên a = 2
=> 2bcd x 4 = dcba => d > 2 và kết quả d x 4 có chữ số tận cùng = 2
=> d = 8
Vậy ta có : 2bc8 x 4 = 8cb2 => phép nhân 4 x b không có nhớ
Mà theo dấu hiệu chia hết cho 4 => b2 chia hết cho 4 => b có thể bằng : 1 ; 3 ; 52 ; 72 ; 92
=> b chỉ có thể = 1
=> 21c8 x 4 = 8c12 => 8000 + 400 + 40c + 32 = 8000 + 100c + 12
=> 420 = 60c => c = 420 : 60 = 7
=> Số cần tìm là : 2178
9x(1000a+100b+10c+d)=1000d+100c+10b+a
999a+99b=999d+99c
ab=dc
abcdx9=dcba
=> (1000a+100b+10c+d)x9=1000d+100c+10b+a
=> 999a+99b=999d+99c
=> ab=cd
k nha
Giải
abcd x 9 = dcba
Tích của một số có 4 chữ số nhân với 9 là số có bốn chữ số.
a là chữ số hàng nghìn của thừa số thứ nhất, nên a chỉ có thể là 1
Ta có:
1bcd x 9 = dcb1
Suy ra d = 9 và b = 0
Vậy:
10c9 x 9 = 9c01
9 x 9 = 81 viết 1, nhớ 8
Để có 9 x c + 8 viết 0 thì c chỉ có thể là 8
Vậy phép tính nhân đó là:
abcd x 9 = dcba
1089 x 9 = 9801
\(3460\)đúng không ừ chắc đúng k mk nha Hội những người chơi Rubik