1) Tính A= 810 + 410/ 84 + 44
Mình sẽ tick cho bạn nào giúp mình!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 8 - 82 + 8 + 83 + 84+ ......+ 899
A = ( 8 - 8 ) + ( 82 + 83 + 84 +......+ 899 )
A = 82 + 83 + 84 +......+ 899
8A = 83 + 84 + 85 +.......+ 8100
8A - A = ( 83 + 84 +...+ 8100 ) - ( 82 + 83 + ...+ 899 )
7A = 8100 - 82
=> A = \(\frac{8^{100}-8^2}{7}\)
VẬY, \(A=\frac{8^{100}-8^2}{7}\)
a) Ta có: -a - b - b = -a - b + c
Vậy: (-a-b+c) - (-a-b-c) = (-a-b+c) - (-a-b+c) = (-a-b+c) : 2
b) (-1-1+-2) : 2 = (-2+-2) : 2 = (-4) : 2 = -2
A\(=\frac{-3}{2}\cdot\frac{-4}{3}\cdot\frac{-5}{4}\cdot...\cdot\frac{-201}{200}\)
\(=\left(-1\right)\cdot\frac{3}{2}\cdot\left(-1\right)\cdot\frac{4}{3}\cdot\left(-1\right)\cdot\frac{5}{4}\cdot...\cdot\left(-1\right)\cdot\frac{201}{200}\)
\(=\left[\left(-1\right)\cdot\left(-1\right)\cdot\left(-1\right)\cdot...\cdot\left(-1\right)\right]\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{201}{200}\right)\)(Có 199 thừa số -1)
\(=\left(-1\right)\cdot\left(\frac{3\cdot4\cdot5\cdot...\cdot201}{2\cdot3\cdot4\cdot...\cdot200}\right)\)
\(=\left(-1\right)\cdot\frac{201}{2}\)
\(=-\frac{201}{2}\)
b: Xét ΔCFE vuông tại F và ΔCAB vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔCFE\(\sim\)ΔCAB
Suy ra: \(\dfrac{CF}{CA}=\dfrac{CE}{CB}\)
\(\Leftrightarrow CF\cdot CB=CA\cdot CE\)
\(\Leftrightarrow CA\cdot CA\cdot\dfrac{1}{2}=CF\cdot CB\)
\(\Leftrightarrow CA^2=2\cdot CF\cdot CB\)
\(x=16\Rightarrow P=\dfrac{\sqrt{16}-2}{\sqrt{16}-3}=\dfrac{4-2}{4-3}=2\)
\(Q=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3\sqrt{x}-6\sqrt{x}-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=P.Q=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}=\dfrac{3\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{5\sqrt{x}-2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{5\sqrt{x}}{3\left(\sqrt{x}+3\right)}-\dfrac{2}{3}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}+3>0\end{matrix}\right.\) ; \(\forall x\ge0\Rightarrow\dfrac{5\sqrt{x}}{3\left(\sqrt{x}+3\right)}\ge0\)
\(\Rightarrow A\ge-\dfrac{2}{3}\)
\(A_{min}=-\dfrac{2}{3}\) khi \(x=0\)
a: Thay x=16 vào P, ta được:
\(P=\dfrac{4-2}{4-3}=2\)
b: Ta có: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{6\sqrt{x}}{9-x}-\dfrac{3}{\sqrt{x}+3}\)
\(=\dfrac{x+3\sqrt{x}-6\sqrt{x}-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=\frac{8^{10}+4^{10}}{8^4+4^4}=8^6+4^6=266240\)
1)
\(A=\frac{8^{10}+4^{10}}{8^4+4^4}\)
\(A=8^{10}:8^4+4^{10}:4^4\)
\(A=8^6+4^6\)
\(A=262144+4096\)
\(A=266240.\)
Chúc bạn học tốt!