Rút gọn M=\(\frac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)
=3-4=-1
b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)
c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=2+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}-1\)
2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)
\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)
\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(\sqrt{3+\sqrt{5}}=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}+1}{\sqrt{2}}\)
\(\sqrt{7+3\sqrt{5}}=\frac{\sqrt{14+2.3\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{9+2.3\sqrt{5}+5}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{3+2.\sqrt{3}.3\sqrt{2}+18}=\sqrt{\left(\sqrt{3}+3\sqrt{2}\right)^2}=\sqrt{3}+3\sqrt{2}\)
\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=3\sqrt{2}-\sqrt{3}\)
Nên \(E=\frac{\sqrt{5}+1+3+\sqrt{5}}{\sqrt{2}}.\left(3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\right)\)
\(=\frac{4+2\sqrt{5}}{\sqrt{2}}.2.3.\sqrt{2}=24+12\sqrt{5}\)
1 a/ Trục căn thức ở mẫu
\(VT=\frac{-\sqrt{1}+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{47}+\sqrt{48}}{48-47}\)\(=-\sqrt{1}+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{47}+\sqrt{48}=\sqrt{48}-1>3=VP\)
b/
\(2\left(10+3\sqrt{11}\right)=11+2.\sqrt{11}.3+9=\left(\sqrt{11}+3\right)^2\)
\(VT=\left(\sqrt{11}-3\right)\sqrt{2}\sqrt{10+3\sqrt{11}}=\left(\sqrt{11}-3\right)\left(\sqrt{11}+3\right)=11-9=2=VP\)
2/
\(B=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{2\left(5+\sqrt{3}.\sqrt{7}\right)}\)
\(2\left(5+\sqrt{21}\right)=7+2\sqrt{7}.\sqrt{3}+3=\left(\sqrt{7}+\sqrt{3}\right)^2\)
\(B=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)=\left(5+\sqrt{21}\right).4\)
\(=20+4\sqrt{21}\)
A chắc không rút gọn được.
Lời giải:
Đặt biểu thức là $A$. Ta có:
\(A=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{2}.\sqrt{5-\sqrt{21}}\)
\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{10-2\sqrt{21}}\)
\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{(\sqrt{7}-\sqrt{3})^2}\)
\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3})|\sqrt{7}-\sqrt{3}|=(5+\sqrt{21})(\sqrt{7}-\sqrt{3})^2\)
\(=(5+\sqrt{21})(10-2\sqrt{21})=2(5+\sqrt{21})(5-\sqrt{21})=2(5^2-21)=8\)
Ta có: \(\left(5+\sqrt{21}\right)\cdot\left(\sqrt{14}-\sqrt{6}\right)\cdot\sqrt{5-\sqrt{21}}\)
\(=\dfrac{\left(10+2\sqrt{21}\right)\cdot\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{10-2\sqrt{21}}}{2}\)
\(=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2\cdot\left(\sqrt{7}-\sqrt{3}\right)^2}{2}\)
=8
a, \(\sqrt{2}A=\sqrt{10-2\sqrt{3.7}}+\sqrt{10+2\sqrt{3.7}}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{3}+\sqrt{7}=2\sqrt{7}\)
\(\Rightarrow A=\sqrt{14}\)
b, \(B=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{5}+\frac{\sqrt{5}}{2}=\frac{3\sqrt{5}}{2}\)
c, \(C=\left(1-\sqrt{11}\right)\left(\sqrt{11}+1\right)=1-11=-10\)
d, \(D=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}{2-3}-\frac{\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}\)
\(=-2-\sqrt{6}+2-\sqrt{6}=-2\sqrt{6}\)