Bài 3
a) Giải phương trình \(\sqrt{10-x}+\sqrt{x+3}=5\)
b) Tìm các giá trị nguyên của m để giao điểm của các đường thẳng mx-2y=3 và 3x+my=4 nằm trong góc vuông phần tư thứ IV
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toạ độ giao điểm của các đường thẳng mx-2y=3 và 3x+my =4 là nghiệm của hpt \(\hept{\begin{cases}mx-2y=3\\3x+my=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3mx-6y=9\\3mx+m^2y=4m\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m^2+6\right)y=4m-9\\3x+my=4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{4m-9}{m^2+6}\\3x+\frac{4m^2-9m}{m^2+6}=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{4m-9}{m^2+6}\\3x=4-\frac{4m^2-9m}{m^2+6}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{4m-9}{m^2+6}\\3x=\frac{9m+24}{m^2+6}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3m+8}{m^2+6}\\y=\frac{4m-9}{m^2+6}\end{cases}}\)
Để giao điểm nằm trong góc phần tư IV
\(\Rightarrow\hept{\begin{cases}x>0\\y< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3m+8}{m^2+6}>0\\\frac{4m-9}{m^2+6}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}3m+8>0\\4m-9< 0\end{cases}\Leftrightarrow\hept{\begin{cases}m>\frac{-8}{3}\\m< \frac{9}{4}\end{cases}}}}\)
\(\Leftrightarrow\frac{-8}{3}< m< \frac{9}{4}\)
Để \(m\inℤ\Rightarrow m\in\left\{0,\pm1,\pm2\right\}\)
gọi 2 đt trên là d1 và d2
từ d1 ta được \(y=\frac{mx-3}{2}\) thế vào d2 ta được \(x=\frac{3m+8}{m^2+6}\) suy ra \(y=\frac{4m-9}{m^2+6}\)
suy ra giao điểm của 2 đt theo m là A= {\(\frac{3m+8}{m^2+6}\) ;\(\frac{4m-9}{m^2+6}\)}
để tọa độ giao điểm của 2 đt nằm ở góc phần tư thứ tư thì x>0 và y<0.
suy ra \(\frac{4m-9}{m^2+6}\) < 0 < \(\frac{3m+8}{m^2+6}\) suy ra \(\frac{-8}{3}\) < 0 < \(\frac{9}{4}\) suy ra m thuộc {-2;-1;0;1;2}
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
a/ ĐKXĐ: \(-3\le x\le10\)
Bình phương 2 vế:
\(10-x+x+3+2\sqrt{-x^2+7x+30}=25\)
\(\Leftrightarrow\sqrt{-x^2+7x+30}=6\)
\(\Leftrightarrow-x^2+7x+30=36\)
\(\Leftrightarrow x^2-7x+6=0\Rightarrow\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)
b/ Phương trình tọa độ giao điểm:
\(\left\{{}\begin{matrix}mx-2y=3\\3x+my=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2x-2my=3m\\6x+2my=8\end{matrix}\right.\)
\(\Rightarrow\left(m^2+6\right)x=3m+8\Rightarrow x=\frac{3m+8}{m^2+6}\) \(\Rightarrow y=\frac{4m-9}{m^2+6}\)
Để giao điểm nằm ở góc phần tư thứ tư thì: \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3m+8}{m^2+6}>0\\\frac{4m-9}{m^2+6}< 0\end{matrix}\right.\) \(\Rightarrow-\frac{8}{3}< m< \frac{9}{4}\)